2,335 research outputs found

    First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC

    Get PDF
    This letter presents the first measurement of jet mass in Pb-Pb and Pb-Pb collisions at root s(NN) = 2.76 TeV and root s(NN) = 5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive to jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nuclear collisions at collider energies. Jets are reconstructed from charged particles using the anti-k(T) jet algorithm and resolution parameter R = 0.4. The jets are measured in the pseudorapidity range |eta(jet)| <0.5 and in three intervals of transverse momentum between 60 GeV/c and 120 GeV/c. The measurement of the jet mass in central Pb-Pb collisions is compared to the jet mass as measured in p-Pb reference collisions, to vacuum event generators, and to models including jet quenching. It is observed that the jet mass in central Pb-Pb collisions is consistent within uncertainties with p-Pb reference measurements. Furthermore, the measured jet mass in Pb-Pb collisions is not reproduced by the quenching models considered in this letter and is found to be consistent with PYTHIA expectations within systematic uncertainties. (C) 2017 The Author. Published by Elsevier B.V.Peer reviewe

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    Full text link
    Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a Δη|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}v2{6}0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a Δη>1.4|\Delta\eta| > 1.4 gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87

    Possibilities for Underground Physics in the Pyhasalmi mine

    Get PDF
    AbstractThe Pyhäsalmi mine is uniquely suited to host new generation of large-scale underground experiments. It was chosen both by the LAGUNA-LBNO and by the LENA Collaboration as the preferred site for a giant neutrino observatory. Regrettably, none of these projects got funded. The termination of the underground excavations in the fall of 2019 marks an important milestone. To maintain the infrastructure in good condition a new sponsor must be found: either a large-scale scientific project or new commercial operation. The considered alternatives for the commercial used of the mine include a pumped-storage hydroelectricity plant and a high-security underground data-storage centre. Without a new sponsor the ongoing experiments, including the cosmic-ray experiment EMMA and the study of 14C content in liquid scintillators, have to be completed within the next few years.Abstract The Pyhäsalmi mine is uniquely suited to host new generation of large-scale underground experiments. It was chosen both by the LAGUNA-LBNO and by the LENA Collaboration as the preferred site for a giant neutrino observatory. Regrettably, none of these projects got funded. The termination of the underground excavations in the fall of 2019 marks an important milestone. To maintain the infrastructure in good condition a new sponsor must be found: either a large-scale scientific project or new commercial operation. The considered alternatives for the commercial used of the mine include a pumped-storage hydroelectricity plant and a high-security underground data-storage centre. Without a new sponsor the ongoing experiments, including the cosmic-ray experiment EMMA and the study of 14C content in liquid scintillators, have to be completed within the next few years

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    Get PDF
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe

    Inclusive J/psi production at mid-rapidity in pp collisions at root s=5.02 TeV

    Get PDF
    Inclusive J/psi production is studied in minimum-bias proton-proton collisions at a centre-of-mass energy of root s = 5.02 TeV by ALICE at the CERN LHC. The measurement is performed at mid-rapidity (vertical bar y vertical bar and are extracted and compared with results obtained at other collision energies.Peer reviewe

    Measurement of the Low-Energy Antideuteron Inelastic Cross Section

    Get PDF
    In this Letter, we report the first measurement of the inelastic cross section for antideuteron-nucleus interactions at low particle momenta, covering a range of 0.3 = 17.4 and 31.8 is obtained. The measured inelastic cross section points to a possible excess with respect to the Glauber model parametrization used in GEANT4 in the lowest momentum interval of 0.3Peer reviewe
    corecore