154 research outputs found

    Eyespot configuration and predator approach direction affect the antipredator efficacy of eyespots

    Get PDF
    Many prey species possess eyespots: paired markings that often consist of two or more concentric circles. Predators are wary of such prey because eyespots are conspicuous and/or mistaken for vertebrate eyes. Here we used naïve domestic chicks as predators of artificial moth-like prey to test the hypothesis that both eyespots configuration and predator approach direction affect the antipredator efficacy of eyespots. We found that when chicks approached prey straight on, eyespots configuration did not influence attack latency. Chicks that approached from either the left or the right, were slower to attack prey in which the central circle of the eyespot was centrally placed or shifted in the direction of the chick’s approach, compared to prey in which the central circle had been shifted away from the direction of approach. These findings suggest that eyespots composed of concentric circles may protect prey against predators approaching from a wider range of directions than eyespots composed of eccentric circles. They are also consistent with the idea that eyespots are mistaken for eyes, and are perceived to pose a lesser risk when their “gaze” is averted from the approaching predator.</jats:p

    Camouflage strategies interfere differently with observer search images

    Get PDF
    This is the final version Available on open access from the Royal Society via the DOI in this recordNumerous animals rely on camouflage for defence. Substantial past work has identified the presence of multiple strategies for concealment, and tested the mechanisms underpinning how they work. These include background matching, disruptive coloration to destroy target edges, and distractive markings that may divert attention from key target features. Despite considerable progress, work has focused on how camouflage types prevent initial detection by naĂŻve observers. However, predators will often encounter multiple targets over time, providing the opportunity to learn or focus attention through search images. At present, we know almost nothing about how camouflage types facilitate or hinder predator performance over repeated encounters. Here, we use experiments with human subjects searching for targets on touch screens with different camouflage strategies, and control the experience that subjects have with target types. We show that different camouflage strategies affect how subjects improve in detecting targets with repeated encounters, and how performance in detection of one camouflage type depends on experience of other strategies. In particular, disruptive coloration is effective at preventing improvements in camouflage breaking during search image formation, and experience with one camouflage type (distraction) can decrease the ability of subjects to switch to and form search images for new camouflage types (disruption). Our study is the first to show how the success of camouflage strategies depends on how they prevent initial and successive detection, and on predator experience of other strategies. This has implications for the evolution of prey phenotypes, how we assess the efficacy of defences, and predator-prey dynamics.The work was supported by a BBSRC grant (BB/L017709/1) to MS and JS

    Variable crab camouflage patterns defeat search image formation

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The raw data are provided as “Supplementary Data 1”, and the code used to analyse the raw data are provided as an R Markdown document (“Supplementary Data 2”).Understanding what maintains the broad spectrum of variation in animal phenotypes and how this influences survival is a key question in biology. Frequency dependent selection – where predators temporarily focus on one morph at the expense of others by forming a “search image” – can help explain this phenomenon. However, past work has never tested real prey colour patterns, and rarely considered the role of different types of camouflage. Using a novel citizen science computer experiment that presented crab “prey” to humans against natural backgrounds in specific sequences, we were able to test a range of key hypotheses concerning the interactions between predator learning, camouflage and morph. As predicted, switching between morphs did hinder detection, and this effect was most pronounced when crabs had “disruptive” markings that were more effective at destroying the body outline. To our knowledge, this is the first evidence for variability in natural colour patterns hindering search image formation in predators, and as such presents a mechanism that facilitates phenotypic diversity in nature.Biotechnology & Biological Sciences Research Council (BBSRC

    A computational neuroscience framework for quantifying warning signals

    Get PDF
    Animal warning signals show remarkable diversity, yet subjectively appear to share certain visual features that make defended prey stand out and look different from more cryptic palatable species. For example, many (but far from all) warning signals involve high contrast elements, such as stripes and spots, and often involve the colours yellow and red. How exactly do aposematic species differ from non‐aposematic ones in the eyes (and brains) of their predators? Here, we develop a novel computational modelling approach, to quantify prey warning signals and establish what visual features they share. First, we develop a model visual system, made of artificial neurons with realistic receptive fields, to provide a quantitative estimate of the neural activity in the first stages of the visual system of a predator in response to a pattern. The system can be tailored to specific species. Second, we build a novel model that defines a ‘neural signature’, comprising quantitative metrics that measure the strength of stimulation of the population of neurons in response to patterns. This framework allows us to test how individual patterns stimulate the model predator visual system. For the predator–prey system of birds foraging on lepidopteran prey, we compared the strength of stimulation of a modelled avian visual system in response to a novel database of hyperspectral images of aposematic and undefended butterflies and moths. Warning signals generate significantly stronger activity in the model visual system, setting them apart from the patterns of undefended species. The activity was also very different from that seen in response to natural scenes. Therefore, to their predators, lepidopteran warning patterns are distinct from their non‐defended counterparts and stand out against a range of natural backgrounds. For the first time, we present an objective and quantitative definition of warning signals based on how the pattern generates population activity in a neural model of the brain of the receiver. This opens new perspectives for understanding and testing how warning signals have evolved, and, more generally, how sensory systems constrain signal design

    Pattern contrast influences wariness in naĂŻve predators towards aposematic patterns

    Get PDF
    An apparent and common feature of aposematic patterns is that they contain a high level of achromatic (luminance) contrast, for example, many warning signals combine black spots and stripes with a lighter colour such as yellow. However, the potential importance of achromatic contrast, as distinct from colour contrast, in reducing predation has been largely overlooked. Here, using domestic chicks as a model predator, we manipulated the degree of achromatic contrast in warning patterns to test if high luminance contrast in aposematic signals is important for deterring naĂŻve predators. We found that the chicks were less likely to approach and eat prey with high contrast compared to low contrast patterns. These findings suggest that aposematic prey patterns with a high luminance contrast can benefit from increased survival through eliciting unlearned biases in naĂŻve avian predators. Our work also highlights the importance of considering luminance contrast in future work investigating why aposematic patterns take the particular forms that they do.</p

    Impacts on cooling energy consumption due to the UHI and vegetation changes in Manchester, UK

    Get PDF
    Climate change projections estimate a rise of approximately 3°C by the 2080s for most of the UK (medium emissions scenario at 50% probability level, 1961-1990 baseline). Warming is a particular concern for urban areas due to urban densification and the Urban Heat Island (UHI) effect. To counteract the UHI, one adaptation strategy for urban areas is increasing the proportion of greenspace, such as parks, street tree plantings, and green roofs. This research employed an interdisciplinary approach to measure and model fine-scale microclimate changes due to greenspace and explore the implications for building energy demand in Manchester, UK. Both the modelled and measured microclimate data informed development of a series of weather files for building energy modelling of three commercial building types. For a scenario adding 5% mature trees to the urban case study, the combination of microclimate modelling and data analysis estimated a maximum hourly air temperature reduction of nearly 1.0°C under peak UHI conditions and wind speed reductions up to 1.0 m/s. These results were used to change the weather files in the building energy modelling, which estimated a reduction of 2.7% in July chiller energy due to the combination of reduced UHI peak hours and eight additional trees shading a three-storey shallow plan building. Energy savings increased to 4.8% under a three-day period of peak UHI conditions.</p

    Pigmentation plasticity enhances crypsis in larval newts: Associated metabolic cost and background choice behaviour

    Get PDF
    In heterogeneous environments, the capacity for colour change can be a valuable adaptation enhancing crypsis against predators. Alternatively, organisms might achieve concealment by evolving preferences for backgrounds that match their visual traits, thus avoiding the costs of plasticity. Here we examined the degree of plasticity in pigmentation of newt larvae (Lissotriton boscai) in relation to predation risk. Furthermore, we tested for associated metabolic costs and pigmentation-dependent background choice behaviour. Newt larvae expressed substantial changes in pigmentation so that light, high-reflecting environment induced depigmentation whereas dark, low-reflecting environment induced pigmentation in just three days of exposure. Induced pigmentation was completely reversible upon switching microhabitats. Predator cues, however, did not enhance cryptic phenotypes, suggesting that environmental albedo induces changes in pigmentation improving concealment regardless of the perceived predation risk. Metabolic rate was higher in heavily pigmented individuals from dark environments, indicating a high energetic requirement of pigmentation that could impose a constraint to larval camouflage in dim habitats. Finally, we found partial evidence for larvae selecting backgrounds matching their induced phenotypes. However, in the presence of predator cues, larvae increased the time spent in light environments, which may reflect a escape response towards shallow waters rather than an attempt at increasing crypsisFinancial support was provided by the Spanish Ministry of Science and Innovation (MICINN), Grant CGL2012-40044 to IGM, and by the Universidad AutĂłnoma de Madrid, Short Stay Grant to NPC. Additional financial support was provided by the MICINN, Grant CGL2015-68670-R to NP

    Optimal-Foraging Predator Favors Commensalistic Batesian Mimicry

    Get PDF
    BACKGROUND:Mimicry, in which one prey species (the Mimic) imitates the aposematic signals of another prey (the Model) to deceive their predators, has attracted the general interest of evolutionary biologists. Predator psychology, especially how the predator learns and forgets, has recently been recognized as an important factor in a predator-prey system. This idea is supported by both theoretical and experimental evidence, but is also the source of a good deal of controversy because of its novel prediction that in a Model/Mimic relationship even a moderately unpalatable Mimic increases the risk of the Model (quasi-Batesian mimicry). METHODOLOGY/PRINCIPAL FINDINGS:We developed a psychology-based Monte Carlo model simulation of mimicry that incorporates a "Pavlovian" predator that practices an optimal foraging strategy, and examined how various ecological and psychological factors affect the relationships between a Model prey species and its Mimic. The behavior of the predator in our model is consistent with that reported by experimental studies, but our simulation's predictions differed markedly from those of previous models of mimicry because a more abundant Mimic did not increase the predation risk of the Model when alternative prey were abundant. Moreover, a quasi-Batesian relationship emerges only when no or very few alternative prey items were available. Therefore, the availability of alternative prey rather than the precise method of predator learning critically determines the relationship between Model and Mimic. Moreover, the predation risk to the Model and Mimic is determined by the absolute density of the Model rather than by its density relative to that of the Mimic. CONCLUSIONS/SIGNIFICANCE:Although these predictions are counterintuitive, they can explain various kinds of data that have been offered in support of competitive theories. Our model results suggest that to understand mimicry in nature it is important to consider the likely presence of alternative prey and the possibility that predation pressure is not constant

    Step-wise evolution of complex chemical defenses in millipedes: a phylogenomic approach

    Get PDF
    With fossil representatives from the Silurian capable of respiring atmospheric oxygen, millipedes are among the oldest terrestrial animals, and likely the first to acquire diverse and complex chemical defenses against predators. Exploring the origin of complex adaptive traits is critical for understanding the evolution of Earth’s biological complexity, and chemical defense evolution serves as an ideal study system. The classic explanation for the evolution of complexity is by gradual increase from simple to complex, passing through intermediate “stepping stone� states. Here we present the first phylogenetic-based study of the evolution of complex chemical defenses in millipedes by generating the largest genomic-based phylogenetic dataset ever assembled for the group. Our phylogenomic results demonstrate that chemical complexity shows a clear pattern of escalation through time. New pathways are added in a stepwise pattern, leading to greater chemical complexity, independently in a number of derived lineages. This complexity gradually increased through time, leading to the advent of three distantly related chemically complex evolutionary lineages, each uniquely characteristic of each of the respective millipede groups
    • …
    corecore