87 research outputs found

    Background and Method of the Striving to be Strong Study a RCT Testing the Efficacy of a M-health Self-management Intervention

    Get PDF
    Background Osteoporosis is a prevalent and debilitating condition affecting \u3e50% of post-menopausal women. Yet, a low percentage of women regularly engage in health promoting behaviors associated with osteoporosis prevention. Complex, multidimensional, m-Health interventions hold promise to effect engagement in health behavior change related to calcium and vitamin D intake, balance, core and leg strength, and physical activity. Methods Striving to be Strong study (R01NR013913-01) tests the efficacy of a research and theory based, patient centered, dynamically tailored intervention delivered via smart phone apps. Ecological Momentary Assessments (EMAs) enhance immediate feedback and complement traditional measures. The desired outcomes are the maintenance of osteoporosis self-management behaviors and a decrease in the loss of bone density over time. The Individual and Family Self-management Theory provided the conceptual foundation for the study. The sample consists of 290 healthy women between the ages of 40 and 60 with an anticipated attrition of 33%. This three group repeated measures Randomized Clinical Trial spans a 12-month time period. Data collected occurs via web site, smart-phone app, self-report, observation, and measures. Proximal (engagement in osteoporosis health behaviors) and distal (serum vitamin D, DXA, and body composition) outcomes are collected for testing of the efficacy of the intervention and theory evaluation. Discussion Active and rigorous quality management processes continually evaluate enrollment and retention goals, functionality of the automated intervention delivery and data collection systems, EMAs, and dispersion of incentives

    Morphological convergence in "river dolphin" skulls

    Get PDF
    Convergent evolution can provide insights into the predictability of, and constraints on, the evolution of biodiversity. One striking example of convergence is seen in the ‘river dolphins’. The four dolphin genera that make up the ‘river dolphins’ (Inia geoffrensis, Pontoporia blainvillei, Platanista gangetica and Lipotes vexillifer) do not represent a single monophyletic group, despite being very similar in morphology. This has led many to using the ‘river dolphins’ as an example of convergent evolution. We investigate whether the skulls of the four ‘river dolphin’ genera are convergent when compared to other toothed dolphin taxa in addition to identifying convergent cranial and mandibular features. We use geometric morphometrics to uncover shape variation in the skulls of the ‘river dolphins’ and then apply a number of phylogenetic techniques to test for convergence. We find significant convergence in the skull morphology of the ‘river dolphins’. The four genera seem to have evolved similar skull shapes, leading to a convergent morphotype characterised by elongation of skull features. The cause of this morphological convergence remains unclear. However, the features we uncover as convergent, in particular elongation of the rostrum, support hypotheses of shared feeding mode or diet and thus provide the foundation for future work into convergence within the Odontoceti.Open access. Distributed under Creative Commons CC-BY 4.

    Form and function within a phylogenetic framework: Locomotory habits of extant predators and some Miocene Sparassodonta (Metatheria)

    Get PDF
    In this study, we analysed locomotory habits in extant predators and Sparassodonta species through geometric morphometric techniques and discriminant analyses of the distal humerus in anterior view, proximal ulna in lateral view, and tibia in proximal view. We included a wide sample of extant predators, and considered the phylogenetic and allometric structure in the data sets. We also included some Sparassodonta, a group of carnivorous metatherians that inhabited South America during the Cenozoic, and inferred their locomotory habits. Results suggest the presence of a close relationship between shape and locomotory habits, even after removing the shape component explained by phylogeny in the three postcranial elements. Terrestrial habits were inferred for Arctodictis sinclairi, Borhyaena tuberata, 'Lycopsis' longirostrus, and Thylacosmilus atrox. Some degree of cursoriality was highlighted in B. tuberata and T. atrox, and climbing abilities in 'L.' longirostrus, and to a lesser degree in B. tuberata. Scansorial habits were inferred for Cladosictis patagonica, Sipalocyon gracilis, Prothylacynus patagonicus, and Pseudonotictis pusillus, and in the case of C. patagonica, some digging ability was also tentatively inferred. © 2012 The Linnean Society of London.Fil: Ercoli, Marcos Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; ArgentinaFil: Prevosti, Francisco Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; ArgentinaFil: Alvarez, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Facultad de Ciencias Naturales y Museo, Universidad Nacional de la Plata; Argentin

    Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches

    Get PDF
    The question ‘what renders a species extinction prone’ is crucial to biologists. Ecological specialization has been suggested as a major constraint impeding the response of species to environmental changes. Most neoecological studies indicate that specialists suffer declines under recent environmental changes. This was confirmed by many paleoecological studies investigating longer-term survival. However, phylogeneticists, studying the entire histories of lineages, showed that specialists are not trapped in evolutionary dead ends and could even give rise to generalists. Conclusions from these approaches diverge possibly because (i) of approach-specific biases, such as lack of standardization for sampling efforts (neoecology), lack of direct observations of specialization (paleoecology), or binary coding and prevalence of specialists (phylogenetics); (ii) neoecologists focus on habitat specialization; (iii) neoecologists focus on extinction of populations, phylogeneticists on persistence of entire clades through periods of varying extinction and speciation rates; (iv) many phylogeneticists study species in which specialization may result from a lack of constraints. We recommend integrating the three approaches by studying common datasets, and accounting for range-size variation among species, and we suggest novel hypotheses on why certain specialists may not be particularly at risk and consequently why certain generalists deserve no less attention from conservationists than specialists

    Relationships of Cetacea (Artiodactyla) Among Mammals: Increased Taxon Sampling Alters Interpretations of Key Fossils and Character Evolution

    Get PDF
    BACKGROUND: Integration of diverse data (molecules, fossils) provides the most robust test of the phylogeny of cetaceans. Positioning key fossils is critical for reconstructing the character change from life on land to life in the water. METHODOLOGY/PRINCIPAL FINDINGS: We reexamine relationships of critical extinct taxa that impact our understanding of the origin of Cetacea. We do this in the context of the largest total evidence analysis of morphological and molecular information for Artiodactyla (661 phenotypic characters and 46,587 molecular characters, coded for 33 extant and 48 extinct taxa). We score morphological data for Carnivoramorpha, Creodonta, Lipotyphla, and the raoellid artiodactylan Indohyus and concentrate on determining which fossils are positioned along stem lineages to major artiodactylan crown clades. Shortest trees place Cetacea within Artiodactyla and close to Indohyus, with Mesonychia outside of Artiodactyla. The relationships of Mesonychia and Indohyus are highly unstable, however--in trees only two steps longer than minimum length, Mesonychia falls inside Artiodactyla and displaces Indohyus from a position close to Cetacea. Trees based only on data that fossilize continue to show the classic arrangement of relationships within Artiodactyla with Cetacea grouping outside the clade, a signal incongruent with the molecular data that dominate the total evidence result. CONCLUSIONS/SIGNIFICANCE: Integration of new fossil material of Indohyus impacts placement of another extinct clade Mesonychia, pushing it much farther down the tree. The phylogenetic position of Indohyus suggests that the cetacean stem lineage included herbivorous and carnivorous aquatic species. We also conclude that extinct members of Cetancodonta (whales+hippopotamids) shared a derived ability to hear underwater sounds, even though several cetancodontans lack a pachyostotic auditory bulla. We revise the taxonomy of living and extinct artiodactylans and propose explicit node and stem-based definitions for the ingroup

    Assessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke

    Get PDF
    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding

    Correlates of rate heterogeneity in avian ecomorphological traits

    Get PDF
    Heterogeneity in rates of trait evolution is widespread, but it remains unclear which processes drive fast and slow character divergence across global radiations. Here, we test multiple hypotheses for explaining rate variation in an ecomorphological trait (beak shape) across a globally distributed group (birds). We find low support that variation in evolutionary rates of species is correlated with life history, environmental mutagenic factors, range size, number of competitors, or living on islands. Indeed, after controlling for the negative effect of species' age, 80% of variation in species-specific evolutionary rates remains unexplained. At the clade level, high evolutionary rates are associated with unusual phenotypes or high species richness. Taken together, these results imply that macroevolutionary rates of ecomorphological traits are governed by both ecological opportunity in distinct adaptive zones and niche differentiation among closely related species

    UK health and social care spending

    No full text
    corecore