47 research outputs found
Alkenone producers inferred from well-preserved 18S rDNA in Greenland lake sediments
Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): G03013, doi:10.1029/2005JG000121.The 18S ribosomal DNA (rDNA) sequences of haptophyte algae were successfully amplified using the polymerase chain reaction (PCR) from water filtrate, surface sediments, and a late-Holocene sediment sample (∼1000 years old) from a group of lakes in the Søndre Strømfjord region of west Greenland. The DNA of the algal primary producer is extremely well preserved in the laminated lake sediments which have been deposited in cold (1°–2°C), anoxic, and sulphidic bottom water. Phylogenetic analyses of the Greenland haptophyte rDNA sequences suggest that alkenones in the Greenland lake sediments are produced by haptophyte algae of the class Prymnesiophyceae. The 18S rDNA sequences from the Greenland samples cluster within a distinct phylotype, differing from both marine haptophytes and from those reported previously from Ace Lake, Antarctica. The similarity of haptophyte rDNA sequences among all samples in this study suggests a single alkenone-based temperature calibration may be applied to these lakes for at least the past 1000 years. These sedimentary archives hold great promise for high-resolution, alkenone-based paleotemperature reconstruction of southern west Greenland, a region sensitive to atmospheric-oceanic climate phenomena such as the North Atlantic Oscillation (NAO).This work was supported by grants from the
National Science Foundation (NSF0081478, 0318050, 0318123, 0402383,
0520718), NASA (NAG5-10665, NNG04GJ34G) and the American Chemical
Society, Petroleum Research Fund (ACS-PRF38878-AC2) to Y. Huang
Recommended from our members
Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflammatory responses
Abstract: IL-6 excess is central to the pathogenesis of multiple inflammatory conditions and this is targeted in clinical practice by immunotherapy that blocks the IL-6 receptor encoded by IL6R. We describe two patients with homozygous mutations in IL6R who presented with recurrent infections, abnormal acute phase responses, elevated IgE, eczema, and eosinophilia. This study identifies a novel primary immunodeficiency, clarifying the contribution of IL-6 to the phenotype of patients with mutations in IL6ST, STAT3 and ZNF341, genes encoding different components of the IL-6 signalling pathway, and alerts us to the potential toxicity of drugs targeting the IL-6R.J.E.D.T. is supported by the MRC (RG95376 and MR/L006197/1). KB is supported by the European Research Council (ERC StG 310857) and the Austrian Science Fund (P29951-B30). This work is supported, in part, by the intramural research program of the NIAID, NIH. A.J.T. is supported by the Wellcome Trust (104807/Z/14/Z) and the NIHR Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London. KGCS is supported by the Medical Research Council (program grant MR/L019027) and is a Wellcome Investigator. M.G. and S.T. are supported in part by Cancer Research UK. RCA and MT are supported by a DOC fellowship of the Austrian Academy of Sciences. This research was made possible through access to the data and findings generated by two pilot studies for the 100,000 Genomes Project. The enrolment for one pilot study was coordinated by the NIHR BioResource (preprint from doi: https://doi.org/10.1101/507244) and the other by Genomics England Limited (GEL), a wholly owned company of the Department of Health in the UK. Over 90% of participants in the pilot studies have been enrolled in the NIHR BioResource. These pilot studies were mainly funded by grants from the National Institute for Health Research (NIHR) in England to the University of Cambridge and GEL, respectively. Additional funding was provided by the BHF, MRC, NHS England, the Wellcome Trust, amongst many other funders. The pilot studies use data provided by patients and their close relatives and collected by the NHS and other healthcare providers as part of their care and support. We thank all volunteers for their participation, and also gratefully acknowledge NIHR Biomedical Research Centres, NIHR BioResource Centres, NHS Trust Hospitals, NHS Blood and Transplant and staff for their contribution. ST is on the scientific advisory board for Ipsen, and is a consultant for Kallyope Inc. The authors declare no competing financial interests
Universal asymptotic clone size distribution for general population growth
Deterministically growing (wild-type) populations which seed stochastically
developing mutant clones have found an expanding number of applications from
microbial populations to cancer. The special case of exponential wild-type
population growth, usually termed the Luria-Delbr\"uck or Lea-Coulson model, is
often assumed but seldom realistic. In this article we generalise this model to
different types of wild-type population growth, with mutants evolving as a
birth-death branching process. Our focus is on the size distribution of clones
- that is the number of progeny of a founder mutant - which can be mapped to
the total number of mutants. Exact expressions are derived for exponential,
power-law and logistic population growth. Additionally for a large class of
population growth we prove that the long time limit of the clone size
distribution has a general two-parameter form, whose tail decays as a
power-law. Considering metastases in cancer as the mutant clones, upon
analysing a data-set of their size distribution, we indeed find that a
power-law tail is more likely than an exponential one.Comment: 22 pages, 4 figures. To appear in the Bulletin of Mathematical
Biology doi:10.1007/s11538-016-0221-
Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.
The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies
Continuous crystallisation
Although crystallisation in pharmaceutical manufacturing is traditionally carried out as a batch operation, with the drive towards implementing continuous manufacturing of pharmaceuticals there is increased interest in developing and applying approaches for continuous crystallisation [1, 2]. Indeed, the potential to directly connect multiple process stages as part of an integrated end-to-end process chain including a continuous crystallisation step has been demonstrated for the manufacture of aliskiren hemifumarate tablets [3] and in a compact reconfigurable platform for a range of liquid dosage APIs [4]. Crystallisation is a key operation for the purification and isolation of active pharmaceutical ingredients (APIs) from solution mixtures to produce pure drug substance in a stable, solid form suitable for subsequent formulation and processing. Crystallisation is therefore a critical stage in controlling the physical properties of the solid material [5, 6]. For pharmaceuticals, achieving high levels of chemical purity of crystallised or precipitated particles is an essential requirement. However, a given API can also show a range of variability in crystalline form (polymorph, solvate, salt, co-crystal), crystal size, size distribution and shape that can have significant effects on processing performance and product stability [7]. Consequently, robust continuous crystallisation processes are required that can achieve the target particle attributes consistently and avoid uncontrolled variation in quality and performance. However, despite the widespread application of crystallisation in fine chemical and pharmaceutical production, it still remains relatively poorly understood. Hence the development of consistent and robust continuous crystallisation processes requires systematic and rigorous approaches to identify and control the complex physical transformations that take place within a multicomponent, multiphase process environment
Mutational signatures of ionizing radiation in second malignancies
Ionizing radiation is a potent carcinogen, inducing cancer through DNA damage. The signatures of mutations arising in human tissues following in vivo exposure to ionizing radiation have not been documented. Here, we searched for signatures of ionizing radiation in 12 radiation-associated second malignancies of different tumour types. Two signatures of somatic mutation characterize ionizing radiation exposure irrespective of tumour type. Compared with 319 radiation-naive tumours, radiation-associated tumours carry a median extra 201 deletions genome-wide, sized 1-100 base pairs often with microhomology at the junction. Unlike deletions of radiation-naive tumours, these show no variation in density across the genome or correlation with sequence context, replication timing or chromatin structure. Furthermore, we observe a significant increase in balanced inversions in radiation-associated tumours. Both small deletions and inversions generate driver mutations. Thus, ionizing radiation generates distinctive mutational signatures that explain its carcinogenic potential.This work was supported by funding from the Wellcome Trust (grant reference 077012/Z/05/Z), Skeletal Cancer Action Trust, Rosetrees Trust UK, Bone Cancer Research Trust, the RNOH NHS Trust, the National Institute for Health Research Health Protection Research Unit in Chemical and Radiation Hazards and Threats at Newcastle University in partnership with Public Health England. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, the Department of Health or Public Health England. Tissue was obtained from the RNOH Musculoskeletal Research Programme and Biobank, co-ordinated by Mrs Deidre Brooking and Mrs Ru Grinnell, Biobank staff, RNOH. Support was provided to AMF by the National Institute for Health Research, UCLH Biomedical Research Centre, and the CRUK UCL Experimental Cancer Centre. S.N.Z. and S.B. are personally funded through Wellcome Trust Intermediate Clinical Research Fellowships, P.J.C. through a Wellcome Trust Senior Clinical Research Fellowship