463 research outputs found

    Controllable Multi-domain Semantic Artwork Synthesis

    Full text link
    We present a novel framework for multi-domain synthesis of artwork from semantic layouts. One of the main limitations of this challenging task is the lack of publicly available segmentation datasets for art synthesis. To address this problem, we propose a dataset, which we call ArtSem, that contains 40,000 images of artwork from 4 different domains with their corresponding semantic label maps. We generate the dataset by first extracting semantic maps from landscape photography and then propose a conditional Generative Adversarial Network (GAN)-based approach to generate high-quality artwork from the semantic maps without necessitating paired training data. Furthermore, we propose an artwork synthesis model that uses domain-dependent variational encoders for high-quality multi-domain synthesis. The model is improved and complemented with a simple but effective normalization method, based on normalizing both the semantic and style jointly, which we call Spatially STyle-Adaptive Normalization (SSTAN). In contrast to previous methods that only take semantic layout as input, our model is able to learn a joint representation of both style and semantic information, which leads to better generation quality for synthesizing artistic images. Results indicate that our model learns to separate the domains in the latent space, and thus, by identifying the hyperplanes that separate the different domains, we can also perform fine-grained control of the synthesized artwork. By combining our proposed dataset and approach, we are able to generate user-controllable artwork that is of higher quality than existingComment: 15 pages, accepted by CVMJ, to appea

    Fire analysis of steel frames with the use of artificial neural networks

    Get PDF
    The paper presents an alternative approach to the modelling of the mechanical behaviour of steel frame material when exposed to the high temperatures expected in fires. Based on a series of stress-strain curves obtained experimentally for various temperature levels, an artificial neural network (ANN) is employed in the material modelling of steel. Geometrically and materially, a non-linear analysis of plane frame structures subjected to fire is performed by FEM. The numerical results of a simply supported beam are compared with our measurements, and show a good agreement, although the temperature-displacement curves exhibit rather irregular shapes. It can be concluded that ANN is an efficient tool for modelling the material properties of steel frames in fire engineering design studies. (c) 2007 Elsevier Ltd. All rights reserved

    A full Eulerian finite difference approach for solving fluid-structure coupling problems

    Full text link
    A new simulation method for solving fluid-structure coupling problems has been developed. All the basic equations are numerically solved on a fixed Cartesian grid using a finite difference scheme. A volume-of-fluid formulation (Hirt and Nichols (1981, J. Comput. Phys., 39, 201)), which has been widely used for multiphase flow simulations, is applied to describing the multi-component geometry. The temporal change in the solid deformation is described in the Eulerian frame by updating a left Cauchy-Green deformation tensor, which is used to express constitutive equations for nonlinear Mooney-Rivlin materials. In this paper, various verifications and validations of the present full Eulerian method, which solves the fluid and solid motions on a fixed grid, are demonstrated, and the numerical accuracy involved in the fluid-structure coupling problems is examined.Comment: 38 pages, 27 figures, accepted for publication in J. Comput. Phy

    Collagenous Fibroma (Desmoplastic Fibroblastoma) of the Neck Presenting with Neurological Symptoms

    Get PDF
    Collagenous fibromas are rare fibrous soft tissue tumours that usually arise in subcutaneous tissue or skeletal muscle at a variety of anatomical sites. These lesions commonly present as painless, slow-growing mobile masses. We describe a unique case of a 41-year-old woman presenting with a posterior neck swelling and longstanding history of severe ongoing pain in the right scapular region, shoulder and neck, weakness of the palmar grip and limited right lateral neck flexion and rotation. A history of trauma to the right neck in adolescence was noted. Histological analysis revealed a paucicellular lesion with spindle and stellate-shaped fibroblasts involving the cervical nerve roots, typical of collagenous fibroma. In a literature search on Medline and Pubmed, we found no reported cases of collagenous fibromas presenting with neurological symptoms. This report highlights the potential of these lesions to present with neurological symptoms due to infiltration of surrounding tissues, and that preceding trauma may contribute to the aetiology

    Differentiation and Loss of Malignant Character of Spontaneous Pulmonary Metastases in Patient-Derived Breast Cancer Models

    Get PDF
    Patient-derived human-in-mouse xenograft models of breast cancer (PDX models) that exhibit spontaneous lung metastases offer a potentially powerful model of cancer metastasis. In this study, we evaluated the malignant character of lung micro-metastases that emerge in such models after orthotopic implantation of human breast tumor cells into the mouse mammary fat pad. Interestingly, relative to the parental primary breast tumors, the lung metastasis (met)-derived mammary tumors exhibited a slower growth rate and a reduced metastatic potential with a more differentiated epithelial status. Epigenetic correlates were determined by gene array analyses. Lung met-derived tumors displayed differential expression of negative regulators of cell proliferation and metabolism and positive regulators of mammary epithelial differentiation. Clinically, this signature correlated with breast tumor subtypes. We identified microRNA-138 as a novel regulator of invasion and epithelial-mesenchymal transition in breast cancer cells, acting by directly targeting the polycomb epigenetic regulator EZH2. Mechanistic investigations showed that GATA3 transcriptionally controlled miR-138 levels in lung metastases. Notably, the miR-138 activity signature served as a novel independent prognostic marker for patient survival beyond traditional pathologic variables, intrinsic subtypes or a proliferation gene signature. Our results highlight the loss of malignant character in some lung micro-metastatic lesions and the epigenetic regulation of this phenotype
    • ā€¦
    corecore