87 research outputs found

    A simple field based method for rapid wood density estimation for selected tree species in Western Kenya

    Get PDF
    Wood density is an important variable for accurate quantification of woody biomass and carbon stocks. Conventional destructive methods for wood density estimation are resource intensive, prohibiting their use, limiting the application of approaches that would minimize uncertainties in tree biomass estimates. We tested an alternative method involving tree coring with a carpenter's auger to estimate wood density of seven tropical tree species in Western Kenya. We used conventional water immersion method to validate results from the auger core method. The mean densities (and 95% confidence intervals) ranged from 0.36 g cm−3 (0.25–0.47) to 0.67 g cm−3 (0.61–0.73) for the auger core method, and 0.46 g cm−3 (0.42–0.50) to 0.67 g cm−3 (0.61–0.73) for the water immersion method. The auger core and water immersion methods were not significantly different for four out of seven tree species namely; Acacia mearnsii, Mangifera indica, Eucalyptus grandis and Grevillea robusta. However, wood densities estimated from the auger core method were lower (t (61) = 7.992, P = <0.001). The ease of the auger core method application, as a non-destructive method in acquiring wood density data, is a worthy alternative in biomass and carbon stocks quantification. This method could protect trees outside forests found in most parts of Africa

    FTIR-DRIFTS-based prediction of β-carotene, α-tocopherol and L-ascorbic acid in mango (Mangifera indica L.) fruit pulp

    Get PDF
    Mango fruits contain substantial vitamins and dietary fibre. Vitamins vary among and within fruits depending on cultivar type and ripening stage. Conventional techniques of vitamins analysis are based on High Pressure Liquid Chromatography, which are costly and laborious. This study evaluated the potential of Fourier transform infrared-diffuse reflectance spectroscopy (FTIR-DRIFTS) technique in predicting β-carotene, α-tocopherol and L-ascorbic acid in pulps of four mango cultivar types (‘Apple’, ‘Kent’, ‘Ngowe’, and ‘Tommy Atkins’). Combination of ran dom forest (RF) and first derivative spectra developed the predictive models. Factorial ANOVA examined the interaction effect of cultivar type, site (‘Thika’, ‘Embu’ and ‘Machakos), and fruit canopy position (sun exposed/within crown) on β-carotene, α-tocopherol and L-ascorbic acid contents. RF Models gave R2 = 0.97, RMSE = 2.27, RPD = 0.72 for β-carotene; R2 = 0.98, RMSE = 0.26, RPD = 0.30 for α-tocopherol and R2 = 0.96, RMSE = 0.51, RPD = 1.96 for L-ascorbic acid. Generally cultivar type affected vitamin C, F (3, 282) = 7.812, p < 0.05. Apple and Tommy Atkins had higher mean vitamins than Ngowe and Kent. In Machakos, within canopy fruits had higher β-carotene than sun-exposed fruits, F (5, 257) = 2.328, p = 0.043. However, interactions between fruit position, site and cultivar did not affect α-tocopherol and vitamin C. In Thika, Tommy Atkins at fully ripe stage had higher vitamin C than at intermediate maturity stage, F (2, 143) = 7.328, p = 0.01. These results show that FTIR-DRIFTS spectroscopy is a high-throughput method that can be used to predict mango fruit vitamins of in a large data set

    Soil structural degradation and nutrient limitations across land use categories and climatic zones in Southern Africa

    Get PDF
    Although soil degradation is a major threat to food security and carbon sequestration, our knowledge of the spatial extent of the problem and its drivers is very limited in Southern Africa. Therefore, this study aimed to quantify the risk of soil structural degradation and determine the variation in soil stoichiometry and nutrient limitations with land use categories (LUCs) and climatic zones. Using data on soil clay, silt, organic carbon (SOC), total nitrogen (N), available phosphorus (P), and sulfur (S) concentrations collected from 4,468 plots on 29 sites across Angola, Botswana, Malawi, Mozambique, Zambia and Zimbabwe, this study presents novel insights into the variations in soil structural degradation and nutrient limitations. The analysis revealed strikingly consistent stoichiometric coupling of total N, P, and S concentrations with SOC across LUCs. The only exception was on crop land where available P was decoupled from SOC. Across sample plots, the probability (φ) of severe soil structural degradation was 0.52. The probability of SOC concentrations falling below the critical value of 1.5% was 0.49. The probabilities of soil total N, available P, and S concentrations falling below their critical values were 0.95, 0.70, and 0.83, respectively. N limitation occurred with greater probability in woodland (φ = .99) and forestland (φ = .97) than in cropland (φ = .92) and grassland (φ = .90) soils. It is concluded that soil structural degradation, low SOC concentrations, and N and S limitations are widespread across Southern Africa. Therefore, significant changes in policies and practices in land management are needed to reverse the rate of soil structural degradation and increase soil carbon storage

    Total elemental composition of soils in Sub-Saharan Africa and relationship with soil forming factors

    Get PDF
    AbstractA thorough understanding of the variation in total soil element concentrations is important especially in the Sub-Saharan Africa (SSA) soil contexts for agricultural and environmental management at large scale. Fingerprinting of soil elemental composition may form a useful basis for evaluating soils in a way that relates to soil-forming factors and inherent soil functional properties. The objectives of this paper are to quantify the proportion of variability in total elemental composition by total X-ray fluorescence (TXRF) method of 1074 soil samples from the Africa Soil Information Service (AfSIS) Project baseline and to determine the relationships with soil forming factors. The samples were from 34 sentinel sites measuring 10×10km, randomized within major climate zones in SSA. Within each sentinel site there were sixteen spatially stratified 1km2 clusters, within which there were ten 100m2 plots. The within and between site patterns of variation in total element composition of 17 elements; Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Sr, Y, Ta, and Pb, were explored. Total element concentration values were within the range reported globally for soil Cr, Mn, Zn, Ni, V, Sr, and Y and higher than reported range for Al, Cu, Ta, Pb, and Ga. There were significant variations (P<0.05) in total element composition within and between the sites for all the elements analyzed with the greatest proportion of total variance and number of significant variance components occurring at the site (55–88%) followed by the cluster nested within site (10–40%) levels. The explorations of the relationships between element composition data and site factors using Random Forest regression demonstrated that soil-forming factors have important influence on total elemental composition in the soil. The fact that the soil-forming factors are related to the concentration of naturally occurring elements in the soil gives rise to the notion that they might be predicted from the soils' element composition. Results implied that >70% of variation in soil element composition patterns can be predicted using information in existing databases or readily observable features. Successful use of TXRF technique would open up possibilities for using total soil elemental composition fingerprints as a useful basis for characterizing soils in a way that relates to soil-forming factors and inherent soil functional properties

    Agronomic biofortification: Uncovering the evidence. A seminar organized by the Excellence in Agronomy Agronomic Initiative

    Get PDF
    Human Zn and Fe deficiencies can be reduced through agronomic biofortification, but information on factors influencing maize grain-Zn and -Fe levels remains scant

    Estimating nutrient concentrations and uptake in rice grain in sub-Saharan Africa using linear mixed-effects regression

    Get PDF
    Context or problem Quantification of nutrient concentrations in rice grain is essential for evaluating nutrient uptake, use efficiency, and balance to develop fertilizer recommendation guidelines. Accurate estimation of nutrient concentrations without relying on plant laboratory analysis is needed in sub-Saharan Africa (SSA), where farmers do not generally have access to laboratories. Objective or research question The objectives are to 1) examine if the concentrations of macro- (N, P, K, Ca, Mg, S) and micronutrients (Fe, Mn, B, Cu) in rice grain can be estimated using agro-ecological zones (AEZ), production systems, soil properties, and mineral fertilizer application (N, P, and K) rates as predictor variables, and 2) to identify if nutrient uptakes estimated by best-fitted models with above variables provide improved prediction of actual nutrient uptakes (predicted nutrient concentrations x grain yield) compared to average-based uptakes (average nutrient concentrations in SSA x grain yield). Methods Cross-sectional data from 998 farmers’ fields across 20 countries across 4 AEZs (arid/semi-arid, humid, sub-humid, and highlands) in SSA and 3 different production systems: irrigated lowland, rainfed lowland, and rainfed upland were used to test hypotheses of nutrient concentration being estimable with a set of predictor variables among above-cited factors using linear mixed-effects regression models. Results All 10 nutrients were reasonably predicted [Nakagawa’s R2 ranging from 0.27 (Ca) to 0.79 (B), and modeling efficiency ranging from 0.178 (Ca) to 0.584 (B)]. However, only the estimation of K and B concentrations was satisfactory with a modeling efficiency superior to 0.5. The country variable contributed more to the variation of concentrations of these nutrients than AEZ and production systems in our best predictive models. There were greater positive relationships (up to 0.18 of difference in correlation coefficient R) between actual nutrient uptakes and model estimation-based uptakes than those between actual nutrient uptakes and average-based uptakes. Nevertheless, only the estimation of B uptake had significant improvement among all nutrients investigated. Conclusions Our findings suggest that with the exception of B associated with high model EF and an improved uptake over the average-based uptake, estimates of the macronutrient and micronutrient uptakes in rice grain can be obtained simply by using average concentrations of each nutrient at the regional scale for SSA. Implications Further investigation of other factors such as the timing of fertilizer applications, rice variety, occurrence of drought periods, and atmospheric CO2 concentration is warranted for improved prediction accuracy of nutrient concentrations

    Visceral obesity and insulin resistance associate with CD36 deletion in lymphatic endothelial cells

    Get PDF
    Disruption of lymphatic lipid transport is linked to obesity and type 2 diabetes (T2D), but regulation of lymphatic vessel function and its link to disease remain unclear. Here we show that intestinal lymphatic endothelial cells (LECs) have an increasing CD36 expression from lymphatic capillaries (lacteals) to collecting vessels, and that LEC CD36 regulates lymphatic integrity and optimizes lipid transport. Inducible deletion of CD36 in LECs in adult mice (Cd36(ΔLEC)) increases discontinuity of LEC VE-cadherin junctions in lacteals and collecting vessels. Cd36(ΔLEC) mice display slower transport of absorbed lipid, more permeable mesenteric lymphatics, accumulation of inflamed visceral fat and impaired glucose disposal. CD36 silencing in cultured LECs suppresses cell respiration, reduces VEGF-C-mediated VEGFR2/AKT phosphorylation and destabilizes VE-cadherin junctions. Thus, LEC CD36 optimizes lymphatic junctions and integrity of lymphatic lipid transport, and its loss in mice causes lymph leakage, visceral adiposity and glucose intolerance, phenotypes that increase risk of T2D

    Pathological variants in TOP3A cause distinct disorders of mitochondrial and nuclear genome stability

    Get PDF
    Topoisomerase 3α (TOP3A) is an enzyme that removes torsional strain and interlinks between DNA molecules. TOP3A localises to both the nucleus and mitochondria, with the two isoforms playing specialised roles in DNA recombination and replication respectively. Pathogenic variants in TOP3A can cause a disorder similar to Bloom syndrome, which results from bi-allelic pathogenic variants in BLM, encoding a nuclear-binding partner of TOP3A. In this work, we describe 11 individuals from 9 families with an adult-onset mitochondrial disease resulting from bi-allelic TOP3A gene variants. The majority of patients have a consistent clinical phenotype characterised by bilateral ptosis, ophthalmoplegia, myopathy and axonal sensory-motor neuropathy. We present a comprehensive characterisation of the effect of TOP3A variants, from individuals with mitochondrial disease and Bloom-like syndrome, upon mtDNA maintenance and different aspects of enzyme function. Based on these results, we suggest a model whereby the overall severity of the TOP3A catalytic defect determines the clinical outcome, with milder variants causing adult-onset mitochondrial disease and more severe variants causing a Bloom-like syndrome with mitochondrial dysfunction in childhood

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Reply

    Get PDF
    [...]the stated goal of preventing death is not adequate, and the goal for the evaluation of syncope should also be to establish a diagnosis and provide a prognosis. [...]the citations were incomplete
    corecore