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22 ABSTRACT

23 While soil degradation is a major threat to food security and carbon sequestration, our knowledge of 

24 the spatial extent of the problem and its drivers is very limited in southern Africa. Using data on soil 

25 clay, silt, organic carbon (SOC), total nitrogen (N), available phosphorus (P) and sulphur (S) 

26 concentrations collected from 4468 plots on 29 sites across Angola, Botswana, Malawi, Mozambique, 

27 Zambia and Zimbabwe, this study presents novel insights into the variations in soil structural 

28 degradation  and nutrient limitations with land use categories (LUCs) and climatic zones. The analysis 

29 revealed strikingly consistent stoichiometric coupling of total N, P and S concentrations with SOC 

30 across LUCs. The only exception was on crop land where available P was decoupled from SOC. 

31 Across sample plots, the probability (φ) of severe soil structural degradation was 0.52. The probability 

32 of SOC concentrations falling below the critical value of 1.5% was 0.49. The probabilities of soil 

33 total N, available P and S concentrations falling below their critical values were 0.95, 0.70 and 0.83, 

34 respectively. N limitation occurred with greater probability in woodland (φ = 0.99) and forestland (φ 

35 = 0.97) than in cropland (φ = 0.92) and grassland (φ = 0.90) soils. It is concluded that soil structural 

36 degradation, low SOC concentrations and N and S limitations are widespread across southern Africa. 

37 Therefore, significant changes in policies and practices in land management are needed to reverse the 

38 rate of soil structural degradation and increase soil carbon storage. 

39  

40 Key words: isometric coupling; miombo; woodland; soil carbon; stoichiometry

41

42 INTRODUCTION

43 Land degradation is expanding at an alarming rate in sub-Saharan Africa (SSA), and it is now posing 

44 unprecedented environmental, social and economic problems (FAO & ITPS, , 2015). Among the 

45 major manifestations of the degradation are loss of soil organic matter (SOM), decline in fertility, 

46 elemental imbalances, deterioration of soil structure, acidification and salinization (Lal, 2015). 
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47 According to the Intergovernmental Technical Panel on Soils (FAO & ITPS, 2015) the loss of 

48 vegetative cover and subsequent loss of soil organic carbon (SOC) are the root causes of most soil 

49 degradation in SSA. 

50 Land use changes including deforestation and forest degradation have been linked to the loss 

51 of 20-50% of the original SOC in the top soil in SSA (Henry et al., 2009). In southern Africa, 

52 deforestation often results from agricultural expansion, settlement, extraction of timber, firewood and 

53 charcoal burning and uncontrolled bushfires (Geist & Lambin, 2002). For example, in the Miombo 

54 ecosystem (the world’s largest contiguous tropical dry forests), tobacco-related deforestation alone 

55 represents up to 50% of the total annual forest loss (WHO, 2017).  Land use changes prompt 

56 immediate soil disturbance that can fundamentally alter both carbon inputs and decomposition rates, 

57 triggering greenhouse gas (GHG) emissions (Henry et al., 2009). 

58 In order to compensate for global CO2 emissions from anthropogenic sources, the “4 per 

59 mille” initiative was launched at the COP21 conference in Paris (van Groenigen et al., 2017; Minasny  

60 et al., 2017). According to Minasny et al. (2017), with good land management, this target can be 

61 achieved especially for soils with low initial SOC stocks (topsoil less than 30 Mg/ha C). Recently van 

62 Groenigen et al. (2017) questioned the feasibility of this goal based on stoichiometric arguments. The 

63 formation and turnover of SOM depends largely on the stoichiometric relationships between carbon 

64 (C), nitrogen (N), phosphorus (P) and sulphur (S) in the soil (Frossard et al., 2016; Lal, 2015; Tipping 

65 et al., 2016; Yang et al., 2010). The C:N:P:S stoichiometry determine key biogeochemical processes 

66 including nutrient inputs and outputs, SOM mineralization patterns and nutrient imbalances 

67 associated with changes in land use (Frossard et al., 2016; Tipping et al., 2016; Xu et al., 2018). 

68 Stoichiometric relationships in the soil also influence SOC sequestration and GHG emissions (van 

69 Groenigen et al., 2017; Yang et al., 2010), and the loss of soil nutrients from intensive agricultural 

70 systems (Zhang et al., 2018).

71 A number of studies especially from China have reported significant influence of land use and 

72 climate on soil C, N, P and S concentrations and their stoichiometric ratios (Wang et al., 2014; Xu et 
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73 al., 2018). On the other hand, lack of quantitative information on soil structural degradation and 

74 nutrient limiting conditions has been one of the main obstacles for designing sustainable land 

75 management practices in southern Africa. Therefore, the objectives of this study were to (1) quantify 

76 the risk of soil structural degradation and (2) determine the variation in soil stoichiometry and nutrient 

77 limitations with LUCs and climatic zones. The main hypotheses being tested were that: (1) the risk 

78 of soil structural degradation is greater on crop land than on other LUCs; (2) soil stoichiometric ratios 

79 do not significantly vary with LUCs and climatic zones; and (3) soil N, available P and S 

80 concentrations are coupled with SOC content. 

81

82 MATERIALS AND METHODS

83 The study sites

84 This study was carried out in 29 sites distributed across Angola, Botswana, Malawi, Mozambique, 

85 Zambia and Zimbabwe (Figure 1a). According to the Koppen-Geiger climatic zoning, 17 sites were 

86 classified as humid or subhumid while the remaining sites were either semiarid or arid 

87 (Supplementary Table S1). The classification of vegetation types and LUCs in this study strictly 

88 follows the Land Degradation Surveillance Framework (LDSF) field guide (Vågen et al., 2015). The 

89 LUCs included forestland, woodland, bush land, shrub land, grassland and cropland (Table S1). The 

90 definition of each LUC and vegetation type is presented in the supporting information (Methods S1). 

91 The terrain, geology and soil types also differ markedly between sites (Tamene et al., 2016). The 

92 dominant soils ranged from Arenosols and Cambisols on arid sites to Ferralsols, Lixisols and Luvisols 

93 on humid sites (Table S1). A large proportion of the sites experience soil erosion, bush fires and 

94 livestock grazing (Tamene et al., 2016).

95

Page 4 of 31

http://mc.manuscriptcentral.com/ldd

Land Degradation & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5

96 Soil sampling and analysis

97 Soil samples were collected using the Africa Soil Information Service (AfSIS) and LDSF protocol 

98 (Vågen et al. (2015) from 4468 plots across the 29 sites. A hierarchical random sampling approach 

99 (Figure 1b) was employed used where a sentinel site of 100 km2 area was selected, and within each 

100 sentinel site 16 clusters of 2.5 km x 2.5 km were created. Within each cluster ten plots measuring 

101 1000 m2 each were randomly laid. Each plot had four subplots had an area of 100 m2. A Global 

102 Positioning System was used to navigate to sampling plots, once a plot was located, the central 

103 position of the plot (referred as the central subplot, c) was marked (Figure 1c). From the center-

104 point of the plot, a distance of 12.2 meters was measured to the upper slope position using 

105 measuring tape and the center of the subplot was marked as subplot 3. Subplots 1 and 2 were offset 

106 at 120 degrees from subplot 3 (Tamene et al., 2016). The radius of each subplot was 5.64 m, which 

107 gives approximately 0.01 ha area. 

108 Soil samples were collected from the 0–20 cm and 20–50 cm soil depths from the center of each 

109 subplot. A composite sample of 500 g (from the four subplots) was taken from the 0–20 cm and 20–

110 50 cm depths separately, which amounted to a total of 320 samples per site. Each soil sample was air 

111 dried to constant weight and sieved using a 2 mm sieve (Vågen et al., 2015). Near infrared (NIR) and 

112 mid infrared (MIR) spectroscopy analyses of all the soil samples were done in the ICRAF laboratory 

113 in Nairobi. This method was chosen due to the large number of samples and the time and resources 

114 constraint. Reference analysis was carried out using wet chemistry for samples from plot 1 of each 

115 cluster, which constituted about 10% of the samples. The wet chemistry results were used for 

116 calibration of NIR and MIR models. 

117 Soil bulk density was calculated as the dry weight of soil divided by its volume (Arshard et al., 

118 1996). Soil texture was determined by laser diffraction method using calgon as a dispersing agent and 

119 ultrasonification for four minutes. Sulfur and available soil P were analyzed by wet chemistry based 

120 on Mehlich 3 extraction procedure, pH was determined in water (1:2.5 soil–water (w/v) suspensions) 

121 at the Crop Nutrition Laboratories in Nairobi, Kenya.
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122

123 Metrics and threshold values

124 Unlike traditional analysis that focuses on individual soil physical and chemical variables, this study 

125 focussed on integrative metrics including the soil structural stability index (SSISt), SOC, total N, 

126 available P, S and their stoichiometric ratios (Table S2). The St is an important indicator of 

127 degradation and the sufficiency of SOM to maintain soil structural stability (Pieri, 1992). Here, St 

128 was calculated as proposed by Pieri (1992) for the top 0-20 cm and 21-50 cm depths and lower depths 

129 separately:

130  𝑆𝑡 = 100 ×
𝑆𝑂𝑀 (%)

𝐶𝑙𝑎𝑦 (%) + 𝑆𝑖𝑙𝑡 (%)

131 SSI St ≤5% indicates a structurally degraded soil due to extensive loss of SOC; 5% < SSI St < 7% 

132 indicates a high risk of structural degradation; and St > 7% indicates low risk (Pieri 1992). 

133 The SOC content is considered as a ‘universal indicator’ of soil fertility, overall quality and a 

134 broader indicator of ecosystem response to environmental change (Loveland & Webb, 2003; 

135 Musinguzi et al., 2013). The SOC pool is also the most reliable indicator for monitoring soil 

136 degradation (Lal, 2015). According to Lal (2015) SOC concentrations should be kept above 1.5% to 

137 reduce risks of soil degradation. Other reviews have concluded that 2% SOC is the critical 

138 concentration for large changes in the functionality of soils (Loveland and Webb, 2003; Musinguzi 

139 et al., 2013). The critical concentrations of total N, available P and S that limit crop production have 

140 been reported to be 0.15%, 11 mg/kg and 10 mg/kg, respectively (Table S2), and these values are 

141 used for inferences regarding nutrient limitations in this studyy.

142 In ecological interactions, stoichiometric ratios are known to be more critical than the actual 

143 concentration of the individual elements. For example, the soil C:N ratio is a sensitive indicator of N 

144 limitation of plants and soil microbial decomposer communities (Mooshammer et al., 2014). Low 

145 soil C:N ratios often accelerate microbial decomposition and N mineralization, creating an 

146 environment not conducive for SOC sequestration. According to Mooshammer et al. (2014) the 
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147 threshold C:N ratio is between 20:1 and 25:1 in organic and mineral soils. When C:N > 25 soil 

148 microbial growth can be N-limited, whereas C:N < 20 implies C limitation. The N:P ratio is also an 

149 important indicator of N limitation. According to Koerselman & Meuleman (1996) vegetation N:P > 

150 16:1 indicates P limitation, while N:P < 14:1 indicates N limitation in the soil. When vegetation N:P 

151 is between 14:1 and 16:1, plant growth is co-limited by soil N and P (Koerselman & Meuleman, 

152 1996). The C:P ratio also plays an important role in the availability of P for plant uptake. At low C:P 

153 ratios, bacteria mobilize more P thus enhancing plant P uptake. At high C:P ratios microbial biomass 

154 P becomes stable as bacteria immobilize P, and this reduces P availability for plant uptake (Zhang et 

155 al., 2018). Low C:P ratios are often interpreted as indications of C limitation relative to P in a given 

156 LUC. Globally, a C:N:P ratios of 186:13:1 seems to be a well-balanced ratio for soils (Cleveland & 

157 Liptzin, 2007; Wang et al., 2014).

158

159 Statistical analysis

160 In order to determine whether SSISt, SOC, N, P and the C:N:P:S stoichiometry of bulk soils vary 

161 with LUC and climate, a linear mixed modelling procedure was applied using soil depth, LUC and 

162 climate as fixed effects and plot as the random effect. Model parameters and their 95% confidence 

163 intervals (95% CI) were estimated using the restricted maximum likelihood method. For statistical 

164 inferences, the 95% confidence intervals (CI) were used to complement P. Means were judged to be 

165 significantly different from one another if their 95% CI were non-overlapping. Since inferences based 

166 on the mean alone can be misleading if the probability distribution of responses is not known, the 

167 cumulative probability distributions of St, SOC, N, P, S and the stoichiometric ratios were 

168 determined. Then the probability of exceeding the critical values of St, SOC, N, P and S were 

169 estimated from their probability distributions in the different LUCs. In the literature, critical values 

170 and thresholds of stoichiometric ratios are not available for soils. Therefore, in this analysis 

171 stoichiometric ratios were not compared against critical values.
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172 A number pf of studies have found significant relationships between SOC, N, P and S 

173 (Cleveland & Liptzin, 2007; McGroddy et al., 2004; Tipping et al., 2016; Yang et al., 2010). The 

174 relationship between C and N has been shown to be isometric in soil samples (Yang et al., 2010). In 

175 order to determine whether or not such relationships exist, regression analysis was conducted taking 

176 the logarithms of SOC (%), total N (%), available P (%) and S (%) in the top 20 cm soil following 

177 Cleveland & Liptzin (2007), Manzoni et al. (2010) and Tipping et al. (2016). Reduced major axis 

178 (RMA) regression was performed in preference to ordinary least square regression (OLS) because of 

179 its superior performance in situations where both variables were measured with error. RMA is also 

180 preferred over OLS when neither variable can be regarded as dependent or independent (Warton et 

181 al., 2006). Any significant relationship that approached isometry (slope = 1) was interpreted as an 

182 indication of close coupling (parallel impoverishment or enrichment) of soil N, P and S with SOC. 

183 The slopes were compared using their 95% CLs to establish whether or not the LUCs significantly 

184 differ in the degree of coupling between N, P and S with SOC.

185 Spearman’s rank correlation was used to examine the association between soil clay, silt, pH, 

186 SOC, N, available P, S, stoichiometric ratios, above-ground biomass carbon, SOC stocks and the 

187 observed probabilities of disturbance variables including fire, grazing and cutting of trees (Methods 

188 S2). 

189 RESULTS 

190 Variations in St, SOC, total N, available P and S across sites

191 The frequency distributions of St, SOC, total N, available P and S concentrations and C:P and N:P 

192 ratios were positively skewed, and their median values were much lower than their means (Figure 

193 2). Across the 29 sites, significant variation was observed in St (Figure 3a), SOC (Figure 3b), total 

194 N (Figure 3c), available P (Figure 4a), S (Figure 4b), SOC stocks (Figure 4b) and stoichiometric 

195 ratios (Figure 5). Across 4468 sample plots, there was a 52% likelihood of severe soil structural 

196 degradation (St ≤ 5%). A further 27% of the sampled plots also had high risk of structural 
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197 degradation (St = 5-7%). SOC concentrations in the 0-20 cm depth were significantly lower than 

198 the critical value of 2% on 10 out of the 29 sites (Figure 3b). Across sample plots, the probability of 

199 SOC concentrations falling below the critical value of 1.5% was 0.49. The probabilities (φ) of soil 

200 total N, available P and S concentrations falling below their critical values were 0.95, 0.70 and 0.83, 

201 respectively (Table 1). Across the sample plots, SOC stocks in the 0-20 soil depth were 

202 significantly correlated with total N (r = 0.937; P <0.0001) and S (r = 0.765; P <0.0001) but not 

203 with available P.

204

205 Variations in St with LUCs and climatic zones

206 Across all sites, the St recorded in the 0-20 cm depth was significantly lower than values considered 

207 sufficient for SOC to maintain structural stability. The probability of structural degradation was 

208 higher in shrubland and woodland compared to cropland and grassland (Table 1). Average values of 

209 St also significantly varied with LUC (Figure 6a) and climatic zones (Figure 7a). Only 3 out of the 

210 29 sites had St was significantly higher than 7 (Figure 3a). In the 0-20 cm depth, St was significantly 

211 lower on crop land than on grassland and bushland (Figure 6a). It was also significantly higher on 

212 arid sites than on humid sites at both 0-20 and 21-50 cm depths (Figure 7a). St showed significant 

213 negative correlation with grazing land (r = -0.373; P = 0.047). 

214

215 Coupling of SOC, total N, available P and S concentrations

216 The regressions analysis of SOC, N and S revealed highly significant (P<0.0001) linear relationships 

217 with slopes close to 1 (Table 2). The RMA slopes of the regression of SOC on N and S were ≥1 

218 indicating isometric (near isometric) relationships. Near isometric relationships were also revealed 

219 between total N and S in all LUCs. The slopes for the regression of SOC on available P were also not 

220 significantly different from 1 except on cropland (Table 2), where P appears to have been decoupled 

221 from SOC. 

222
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223 Variations in SOC, total N, available P and S with LUCs and climatic zones

224 The 0-20 cm depth had significantly (P<0.001) higher SOC concentrations than the 21-50 cm depths 

225 across LUCs (Figure 6b) and climate zones (Figure 7b). On average SOC was higher in grassland and 

226 cropland than in all other LUCs (Figure 6b). The probability of SOC concentrations being less than 

227 the critical value of 1.5% was highest (φ = 0.63) in woodland and lowest in grassland (φ = 0.42) soils 

228 (Table 1). The highest value of SOC stocks (63 Mg/ha) was recorded in grasslands in humid areas 

229 whereas the lowest (24.5 Mg/ha) was in cropland in arid areas (Table S3). Across LUCs, SOC stocks 

230 were extremely low (<30 Mg/ha) in arid sites. 

231 Concentrations of total N significantly varied with soil depths, LUCs and climate zones; 

232 concentrations being higher in the 0-20 cm than 21-50 cm depth across LUCs (Figure 6c) and climates 

233 (Figure 7c). N limitation occurred with greater probability (φ) in woodland (φ = 0.99) and forestland 

234 (φ = 0.97) than in cropland (φ = 0.92) and grassland (φ = 0.90) (Table 1). 

235 Soil available P concentrations significantly (P<0.001) varied with soil depth, LUC (Figure 

236 6d) and climate (Figure 7d). Spatial variability in P concentrations was much higher (CV = 157%) 

237 compared total N and S concentrations (CV = 67-68%). The probability of available P concentrations 

238 falling below the critical value was highest in shrubland (0.78) and lowest (0.59) in cropland soils 

239 (Table 1). Available P concentrations were significantly higher on cropland than forest land (Figure 

240 6d) and on subhumid sites than on arid sites (Figure 7d). 

241 Soil sulphur S concentrations significantly varied with LUC (Figure 6e) and climate (Figure 

242 7e) but not with soil depth. Grassland soils had significantly higher S concentrations compared to all 

243 other LUCs (Figure 6e). Among the LUCs, woodland soils had the highest probability (0.86) of 

244 containing S concentrations below the critical value of is 10 mg/kg (Table 1). The S concentrations 

245 were also significantly lower on semiarid and arid sites than humid sites (Figure 7e). 

246
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247 Variations in stoichiometric ratios with LUCs and climatic zones

248 Contrary to our initial hypothesis, the C:N:P:S stoichiometry significantly varied with LUCs and 

249 climate. Across LUCs and climatic zones, C:N ratios were lower in the 0-20 cm depth than in the 21-

250 50 cm depth (Figure 6f; 7f). Crop land had significantly (P<0.001) lower C:N ratio than all other land 

251 uses, but it did not significantly differ among the other LUCs (Figure 6f). Among the climatic zones, 

252 arid sites had significantly (P<0.001) lower C:N ratios than semiarid, subhumid and humid sites. 

253 (Table 3; Figure 7f). 

254 The C:P ratio were generally higher in the 21-50 cm depth than 0-20 cm (Figure 6g). 

255 Grasslands had significantly higher C:P than all other LUCs (Figure 6g). Humid and subhumid sites 

256 had higher C:P ratios than arid sites (Figure 7g). The N:P ratios significantly varied with soil depth, 

257 LUC  and climatic zones. Generally, the 21-50 cm depth had higher N:P ratios than the 0-20 cm depth 

258 (Figure 6h). Grasslands had significantly (P<0.001) higher N:P ratios than all other LUCs (Figure 

259 6h). Arid sites had significantly lower N:P ratios than subhumid and humid sites (Table 3Table 3). 

260 The C:N:P and C:N:P:S ratios in the top 20 cm varied with LUC and climatic zones (Table 

261 3Table 3). Among the LUCs, the highest C:N:P ratio was recorded in grassland (191:12:1) and the 

262 lowest in woodland (120:7:1) (Table 3Table 3). The highest C:N:P:S ratio was recorded on cropland 

263 and the lowest in shrubland (Table 3Table 3). The N:P and N:S ratios were significantly positively 

264 correlated with SOC (Table S4). The C:P and N:P stoichiometric ratios were also significantly 

265 positively correlated with soil clay, silt and S contents (Table S4). 

266 DISCUSSION

267 This study has revealed high frequency of soil structural degradation, low SOC concentrations and 

268 N limitation across various LUCs in southern Africa. Cultivated soils are often believed to be more 

269 degraded in comparison to forestland, which is usually used as the baseline in typical 

270 chronosequence studies (Tully et al., 2015). Contrary to conventional wisdom and our initial 

271 hypothesis, SOC, total N and available P concentrations were also higher in grassland and cropland 
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272 than in woodland and forestland across southern Africa. This novel but seemingly counterintuitive 

273 finding has plausible explanations. Although cultivated soils are often believed to be more degraded 

274 in comparison to forestland, the risks of soil structural degradation were higher in forestland than in 

275 cropland. Contrary to our initial hypothesis, SOC and total N concentrations were also lower in 

276 woodland and forestland than in grassland and cropland across southern Africa. This finding is 

277 consistent with empirical evidence from elsewhere that C levels in intensively managed agricultural 

278 and pastoral ecosystems can exceed those under native conditions (Six et al., 2002). The higher 

279 SOC and N concentrations on crop land could be linked to nutrient addition from fertilizers and 

280 manure, and nitrogen fixing trees planted on crop land.

281 The lower SOC and total N concentrations recorded in woodland and forestland in the study 

282 area may be attributed to various factors. First, tree roots being long-lived and coarser than typical 

283 grass roots may contribute less to SOM than grass roots (Post & Kwon 2000, Guo & Gifford 2002). 

284 The extensive rooting systems of grasses and phytolith accumulation in grassland protects SOM 

285 from mineralization leading to increased SOC concentration (Liddicoat et al, 2010). Grasslands in 

286 southern Africa are often used as communal grazing areas, and as such they may be enriched in 

287 SOC from livestock manure inputs. 

288 Another possible reason is that Trees generally deposit more C as litter to the forest floor, 

289 which decompose very slowly. The litter is often burnt by annual bush fires, which are common in 

290 southern Africa (Ryan and Williams, 2011; Sileshi & Mafongoya, 2006). The effects of repeated 

291 fires on SOC and N can be both severe and cumulative. According to a 10 years’ long study in a 

292 subhumid miombo woodland in Zambia, fire reduced topsoil SOC and N at three out of four sites 

293 (Chidumayo & Kwibisa, 2003). Similarly, a study on a subhumid savannah site in Zimbabwe 

294 revealed 40–50% increase in C stocks due to fire exclusion compared to annual burning (Bird et al., 

295 2000). 

296 The N and S concentrations were tightly coupled, and their limitations were more widespread 

297 in woodland and forest land than grassland. This is probably because tree species in southern 
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298 African woodlands have 50–60% N re-absorption from leaves prior to leaf fall (Timberlake & 

299 Chidumayo, 2011). High C:N ratios in plant biomass combined with moisture deficits during the 5-

300 7 months long dry season a year may also result in slow N cycling (Timberlake & Chidumayo, 

301 2011). Across LUCs, SOC, total N and available P decreased with aridity. The low SOC in semiarid 

302 and arid areas could result from rapid turnover of SOM due to high temperature or low moisture, 

303 which limits decomposition. 

304 This study also revealed coupling of N and S with SOC. The coupling may arise from the 

305 isometric relationship between C and N (Yang et al., 2010), and the fact that plants are the major 

306 source of SOC and N (Cleveland & Liptzin, 2007). The high correlations between SOC, N and S 

307 suggest strong coupling irrespective of LUC or climate. This highlights the fact that SOM build up 

308 could be slow due to N, P and S limitations in southern Africa. Assuming a C:N ratio of 12 in SOM, 

309 storing 1 Mg/ ha C would require approximately 0.08 Mg/ha N and 20 Mg/ha P in organic forms (van 

310 Groenigen et al., 2017). This means that significant N inputs are needed in southern Africa to achieve 

311 the C sequestration rates envisioned in the “4 per mille” aspiration of COP21. 

312 Analysis of stoichiometric ratios indicated that SOC, N and S concentrations are 

313 veryalarmingly low on most sites. During natural ecosystem development, it usually takes centuries 

314 or millennia to induce stoichiometric shifts. However, such shifts are expected to be accelerated by 

315 increases in anthropogenic disturbance and climate change. The C:N:P ratio found across LUCs are 

316 comparable with ratios for bulk soil reported by Cleveland & Liptzin (2007), Griffiths et al. (2012) 

317 and Tian et al. (2010). According to Cleveland & Liptzin (2007) the C:N:P stoichiometry in soil 

318 remains relatively stable at 186:13:1 on the global scale. This was very close to the value we recorded 

319 in grassland (191:12:1). Griffiths et al. (2012) found a C:N:P ratio of 219:18:1, which was closer to 

320 our value for humid climates (204:12:1). Tian et al. (2010) found a C:N:P ratio of 134:9:1, which was 

321 very close to the value we found for forest land (132:8:1).  

322 The C:N and C:P stoichiometry found here indicates that SOM is lost at a faster rate than it is 

323 formed on the majority of sample plots. The very high proportion of sampled plots with low St, SOC 
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324 and total N especially in forestland, woodland and shrubland indicate high risks of soil structural 

325 degradation and N limitations if used for low input agriculture. Low input agriculture, such as those 

326 practiced in southern Africa, results in low yields, and this has triggered clearing of more forest land 

327 to off-set the yield gap. However, the land has been shown to become unproductive within a few 

328 years after forest clearing probably because it is inherently nutrient deficient. This emphasizes that 

329 clearing of native vegetation into cropland will be unsustainable as it will speed up SOC losses and 

330 soil degradation without necessarily increasing crop production. The greatest impact of this will be 

331 on food security and greenhouse gas (GHG) mitigation as nutrient limitations will impede crop 

332 productivity, biomass accumulation and subsequently SOC sequestration. Therefore, significant 

333 changes in policies and practice are needed to reverse the current trend of unsustainable land 

334 management. On crop land, the strategy should be on increased legume integration (e.g. intercropping 

335 and agroforestry) and integrated soil fertility management to increase N inputs and promote build-up 

336 of SOM. Henry et al. (2009) cites a number of studies that demonstrate synergetic effect between 

337 mineral fertilizers and organic amendments leading to higher yields and SOC content. In that regard, 

338 investment in N fertilizer and manure could be targeted to soils currently having low C stocks, for 

339 example, those degraded due to long periods of cropping. These soils are usually strongly depleted 

340 in SOC and the sink is nearly empty so that C inputs are more likely to be translated into additional 

341 storage more quickly (van Groenigen et al., 2017). 

342 On grassland, controlled grazing and reseeding with nitrogen N fixing trees and herbaceous 

343 fodder legumes can speed SOM build-up. Since most African rangelands are now over-stocked, more 

344 emphasis should also be placed on improving grazing management in communal grazing areas.

345 In woodland and forest land, an urgent need is to slow down the rate of conversion to cropland. 

346 This is particularly important to mitigate the release of carbon from the soil and biomass into the 

347 atmosphere (Scholes, 1996). According to Scholes (1996) if half of the carbon in the top 30 cm soil 

348 and all the carbon in woody biomass were released in just half of the existing miombo woodland, the 

349 mean rate of release would be around 0.2 Pg C per year, which is over 20% of the global carbon 
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350 released from land-use change. Therefore, there are really no strong arguments in favor of converting 

351 woodland into agricultural land. Another key strategy for slowing soil degradation is fire 

352 management. Much controversy still surrounds the sustainability of indigenous fire management 

353 practices. This controversy is a result of a discord between official fire policies and indigenous fire 

354 management practices (Sileshi & Mafongoya, 2006). Low-intensity, early and patchy burning has 

355 been recommended to reduce the detrimental effect of fire on forests and soil function (Chidumayo 

356 & Kwibisa, 2003; Ryan & Williams, 2011). 

357 CONCLUSION

358 Based on the analyses above it is concluded that soil structural degradation, low SOC concentrations 

359 and N and S limitations are widespread in southern Africa. If the current trend is left unchecked, it 

360 can undermine soil carbon storage, ecosystem functions and food security. We recommend significant 

361 increases in legume integration on cropland, slowing down the rate of conversion of woodland into 

362 cropland, improved control of late season fires and controlled grazing and reseeding of grasslands 

363 with fodder legumes. Since, there is high spatial variability in SOC and soil nutrients between sites, 

364 we also recommend that site-specific studies be conducted to develop targeted land management 

365 interventions. Our results only provide a snapshot of soil SOC and soil nutrients, and therefore they 

366 should be interpreted with caution regarding temporal changes. However, the result may provide a 

367 valuable baseline for monitoring future shifts in SOC and stoichiometric ratios.

368
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466 CAPTIONS TO FIGURES:

467 Figure 1. Distribution of sentinel sites (a), schematic representation of the hierarchical structure of 

468 the site-cluster-plot-subplot sampling design employed in this study (b) and sampling plot (0.1 ha) 

469 layout with the four subplots (C, 1, 2, 3 each 0.01 ha) from where soils were sampled (c)

470

471 Figure 2. The frequency distribution of St (%), SOC (%), total N (%), available P (mg/kg) and S 

472 (mg/kg) concentrations, and stoichiometric ratios in the 0-20 cm soil depth across sites.

473

474 Figure 3. Variation in St (%), SOC (%) and total N (%) in the 0-20 cm soil depth across sites and 

475 climatic zones. Site names are preceded by the country name abbreviated as: Ang = Angola, Bot = 

476 Botswana, Mal = Malawi, Moz-Mozambique, Zam = Zambia and Zim = Zimbabwe. Error bars 

477 represent 95% confidence limits (CL) of means. The dotted lines represent the upper (black) and 

478 lower (red) critical values of St and SOC.

479

480 Figure 4. Variation in soil available P (mg/kg), S (mg/kg) concentrations and SOC stocks in the 0-20 

481 cm soil depth across sites and climatic zones. Country names have been abbreviated as in Figure 3. 

482 The dashed lines in (a) and (b) represent the critical values of total N and available P, respectively.

483

484 Figure 5. Variation in stoichiometric ratios in the 0-20 cm soil depth across sites. Country names have 

485 been abbreviated as in Figure 3. Error bars represent 95% confidence limits (CL) of means. The 

486 dashed lines in (a), (b) and (c) represent the critical values of C:N, C:P and N:P, respectively.

487

488 Figure 6. Variation in soil structural stability index (St in %), SOC (%), total N (%), available P 

489 (mg/kg) and S (mg/kg) concentrations, and stoichiometric ratios with and soil depth and land use 
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490 category (Grass = grassland; Crop = cropland; Bush = bushland, Shrub = shrubland; Forest = 

491 forestland and Wood = woodland). Error bars represent 95% confidence limits (CL) of means. 

492

493 Figure 7. Variation in soil structural stability index (St in %), SOC (%), total N (%), available P 

494 (mg/kg) and S (mg/kg) concentrations, and stoichiometric ratios with the Koppen-Geiger climatic 

495 zones and soil depth. Error bars represent 95% confidence limits (CL) of means. 

496
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Table 1. Probabilities (φ) of St, SOC, N, P and S falling below their critical values in the 0-20 cm 
soil 

Variable and 
critical value

Cropland Grassland Shrubland Bushland Forestland Woodland Overall

St <5% 0.47 0.47 0.60 0.52 0.57 0.62 0.52

SOC <1.5% 0.45 0.42 0.63 0.51 0.53 0.61 0.49

SOC <2% 0.63 0.58 0.75 0.69 0.71 0.77 0.66

N <0.15%* 0.92 0.90 0.98 0.96 0.97 0.99 0.95

P <11 mg/kg* 0.59 0.73 0.78 0.72 0.75 0.75 0.70

S <10 mg/kg* 0.80 0.69 0.82 0.77 0.81 0.86 0.83

* These are indicative values below which crop production becomes critically limited.
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Table 2. Reduced major axis (RMA) slopes of the regression of N and SOC, available P and SOC and S 
and SOC concentrations in the 0-20 cm soil depth. Regression was conducted on a log-log scale.

Regression Landuse RMA slope† R2

SOC vs total N Cropland 1.10 (1.08 – 1.12) 0.874
Grassland 1.12 (1.10 – 1.14) 0.898
Shrubland 1.13 (1.06 – 1.19) 0.793
Bushland 1.13 (1.10 – 1.17) 0.875
Forestland 1.04 (0.98 – 1.10) 0.884
Woodland 0.98 (0.96 – 1.01) 0.869

SOC vs S Cropland 1.48 (1.43 – 1.54) 0.544
Grassland 1.41 (1.36 – 1.46) 0.580
Shrubland 1.55 (1.43 – 1.66) 0.656
Bushland 1.59 (1.49 – 1.68) 0.551
Forestland 1.68 (1.49 – 1.88) 0.483
Woodland 1.61 (1.52 – 1.69) 0.487

Total N vs S Cropland 1.35 (1.30 – 1.40) 0.492
Grassland 1.26 (1.22 – 1.30) 0.615
Shrubland 1.37 (1.26 – 1.49) 0.525
Bushland 1.40 (1.32 – 1.48) 0.540
Forestland 1.61 (1.43 – 1.80) 0.512
Woodland 1.63 (1.55 – 1.71) 0.537

SOC vs available P Cropland -0.75 (-0.71 – -0.79) 0.016
Grassland 0.98 (0.93 – 1.03) 0.027
Shrubland 1.03 (0.90 – 1.16) 0.020
Bushland 0.95 (0.87 – 1.03) 0.079
Forestland 1.29 (1.09 – 1.50) 0.043
Woodland 0.89 (0.83 – 0.95) 0.035

* RMA slope significantly lower than 1 indicates the relationship is not isometric. 
†Estimates were based on a sample sizes of 1370 plots in cropland, 1427 in grassland, 249 in shrubland, 
494 in bushland, 150 in forestland and 779 in woodland.
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Table 3. Variation in mean stoichiometric ratios with land use and climatic zones in the 0-20 cm depth

 Land use C:N C:P N:P C:S N:S P:S C:N:P C:N:P:S

Land use Cropland 15:1 159:1 10:1 145:1 10:1 3:1 159:10:1 145:10:3:1
Grassland 17:1 191:1 12:1 135:1 8:1 2:1 191:12:1 135:8:2:1
Bush land 16:1 141:1 9:1 132:1 8:1 2:1 141:09:1 132:8:2:1
Shrub land 16:1 152:1 10:1 115:1 8:1 2:1 152:10:1 115:8:2:1
Forestland 16:1 125:1 8:1 129:1 8:1 1:1 124:8:1 129:8:1:1
Woodland 17:1 120:1 7:1 125:1 8:1 2:1 120:7:1 125:8:2:1

Climatic zone Humid 16:1 181:1 11:1 127:1 8:1 1:1 181:11:1 127:8:1:1
Subhumid 17:1 174:1 11:1 152:1 9:1 3:1 175:11:1 152:9:3:1
Semiarid 16:1 140:1 9:1 127:1 8:1 2:1 140:9:1 127:8:2:1
Arid 14:1 118:1 8:1 89:1 7:1 1:1 119:8:1 89:7:1:1
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