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A thorough understanding of the variation in total soil element concentrations is important especially in the Sub-
Saharan Africa (SSA) soil contexts for agricultural and environmental management at large scale. Fingerprinting
of soil elemental composition may form a useful basis for evaluating soils in a way that relates to soil-forming
factors and inherent soil functional properties. The objectives of this paper are to quantify the proportion of
variability in total elemental composition by total X-ray fluorescence (TXRF) method of 1074 soil samples
from the Africa Soil Information Service (AfSIS) Project baseline and to determine the relationships with soil
forming factors. The samples were from 34 sentinel sites measuring 10 × 10 km, randomized within major
climate zones in SSA. Within each sentinel site there were sixteen spatially stratified 1 km2 clusters, within
which there were ten 100 m2 plots. The within and between site patterns of variation in total element
composition of 17 elements; Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Sr, Y, Ta, and Pb, were explored. Total
element concentration values were within the range reported globally for soil Cr, Mn, Zn, Ni, V, Sr, and Y and
higher than reported range for Al, Cu, Ta, Pb, and Ga. There were significant variations (P b 0.05) in total element
composition within and between the sites for all the elements analyzed with the greatest proportion of total
variance and number of significant variance components occurring at the site (55–88%) followed by the cluster
nested within site (10–40%) levels. The explorations of the relationships between element composition data
and site factors using RandomForest regression demonstrated that soil-forming factors have important influence
on total elemental composition in the soil. The fact that the soil-forming factors are related to the concentration of
naturally occurring elements in the soil gives rise to the notion that they might be predicted from the soils'
element composition. Results implied that N70% of variation in soil element composition patterns can be
predictedusing information in existingdatabases or readily observable features. Successful use of TXRF technique
would open up possibilities for using total soil elemental composition fingerprints as a useful basis for
characterizing soils in a way that relates to soil-forming factors and inherent soil functional properties.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Knowledge of the distribution and baseline concentrations of major
and trace elemental contents in soilswill help to assess soil, land and en-
vironmental quality especially in developing countries in Sub-Saharan
Africa (SSA). Fingerprinting of soil elemental composition may form a
useful basis for classifying soils in a way that relates to soil-forming
factors and inherent soil functional properties (Kabata-Pendias and
ICRAF), P.O. Box 30677, Nairobi

. This is an open access article under
Mukherjee, 2007; Rawlins et al., 2012). This is due to the fact that
variations in the concentrations of soil chemical elements are derived
from differences in the composition of the parent material and from
fluxes of matter and energy into or from soils over time (Helmke,
2000; Rawlins et al., 2012). In addition, soil-forming factors (e.g., parent
material, climate, topography, vegetation and time) are important
drivers of total elemental concentrations in the soil (Jenny, 1941). The
nature of the key variables explaining ecological diversity of soils can
be related to themineralogy of parent rock and although these relation-
ships have been inferred, mineralogy of parent rock is a principal factor
determining spatial patterns of land resources (Voortman, 2011). The
mineralogy and elemental composition of soil are related to the nature
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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of the parent material and the degree to which this material has been
weathered (Negrel et al., 2014).

Soil mineralogy is a key determinant of many soil functional proper-
ties, for example nutrient quantities and intensities, pH and buffering,
anion and cation exchange capacity, aggregate stability, soil carbon
protection, dispersion, and resistance to erosion. Primary associations
of elements reflect mineralogy and some elements can thus be used as
proxies for mineralogy including heavy minerals, carbonates and clays
(Grunsky et al., 2009). While total elemental concentrations in soil
reflect parent material concentrations are also impacted by weathering
rates and over the longer term by land use and climate. Rawlins et al.
(2009) demonstrated use of element composition for the prediction of
particle size distribution and their errors.

There is potential for increasing the knowledge of the spatial extent
of trace elements using recent advances in analytical chemistry and in-
creasing applications. Total X-ray fluorescence spectroscopy (TXRF) is a
relatively new technique that can provide for a rapid and simultaneous
determination of the concentrations of many elements from Na to U in
the periodic table with minimal sample preparation time and low ma-
trix interferences (Stosnach, 2005; Towett et al., 2013). However,
TXRF has not been widely used as an analytical technique for the total
element composition of soils of SSA due to lownumber ofwell equipped
soil labs. Towett et al. (2013) tested a method for the use of TXRF for
direct quantification of total element concentrations in soils, demon-
strating the potential utility of TXRF for rapid screening of total element
concentrations in soils assuming sufficient calibration measures are
followed. Successful use of the TXRF technique would open up the
possibilities for using total element composition to improve global
predictions of soil properties, such as cation exchange capacity and
available nutrients, especially in Africa where variations in soil mineral-
ogy and nutrient balance critically determine vegetation composition
and agricultural potential (Voortman, 2011).

This paper uses data from several projects, including the first phase
(2009–2012) of the Globally Integrated Africa Soil Information Service
(AfSIS) project, whichwas a research-based project to develop a practi-
cal, timely, and cost-effective soil health surveillance service to map soil
conditions, set a baseline for monitoring changes, develop global stan-
dards and methodologies, and provide options for improved soil and
land management in Africa (Vågen et al., 2010). The AfSIS project area
included about 17.5 million km2 of continental Sub-Saharan Africa
(SSA), excluding hot and cold deserts, encompassing more than 90% of
Africa's human population living in 42 countries. All of the data used
for this paper were taken from AfSIS sites surveyed using the Land Deg-
radation Surveillance Framework (LDSF), (Vågen et al., 2010, 2015;
Vågen and Walsh, 2012) in the period from January 2010 to March
2012. The LDSF utilizes novel data collectionmethodologies that are ef-
ficient, cost-effective, and vastly improve the analytical precision of the
landscape level estimates by producing a suite of soil and vegetation in-
dicators that are spatially specific and continuous across the surveyed
landscape (Shepherd et al., 2015; Vågen and Walsh, 2012; Vågen and
Winowiecki, 2013; Vågen et al., 2010, 2013; Winowiecki et al., 2015).
These include new direct soil spectral methods using only light (visible,
infrared and X-ray) that hold promise for providing rapid, low cost and
reproducible soil characterization (Shepherd, 2010). The hierarchical,
systematic and random sampling approach reduces sampling effort
and cost. The LDSF is intended to provide a whole landscape (systems)
perspective to land use planning and decision making to enable coun-
tries to both increase agricultural productivity and maintain ecosystem
services (Winowiecki et al., 2015; Shepherd et al., 2015). The potential
for spectroscopy as a key component of soil health surveillance systems
has already been articulated (Shepherd and Walsh, 2007; Shepherd
et al., 2015). This work thus set out to determine the usefulness of
TXRF as an analytical technique for the total element composition of
soils from 34 LDSF sentinel sites. Specific objectives of this paper were
to evaluate the relationship between TXRF total element concentrations
in soils and to test how well element composition is predicted by soil
forming factors as such relationships could then be used as proxies to
infer soil functional properties.

2. Materials and methods

2.1. Study area and sampling

The current study was based on georeferenced samples associated
with the AfSIS project taken from a set of thirty four 100-km2 LDSF
sentinel sites: Ghana (3 sites), Tanzania (8 sites), Ethiopia (4 sites),
Mali (3 sites), Burkina Faso (1 site), Mozambique (4 sites), Nigeria
(3 sites), Zambia (1 site), Kenya (3 sites), Guinea (2 sites), and Malawi
(2 sites) (Fig. 1). Field sampling was conducted based on the field
methods collectively referred to as LDSF protocol (Vågen et al., 2010),
also described in Vågen et al., 2012, 2015, and Winowiecki et al., 2015.
Within each sentinel site there were ten 1000 m2 plots randomized
within sixteen spatially stratified 1 km2 clusters. Topsoil (0–20 cm)
and subsoil (20–50 cm) samples were collected from Plot 1 from each
cluster giving a total of 1074 samples (16 plots per site × 2 soil
depths × 34 sentinel sites). A summarized description of the 34 sentinel
sites from which the soil samples used for this study were collected,
including the location, average elevation, annual total precipitation,
temperature ranges, major soil classes (based on the IUSS Working
Group WRB (2014) and the FAO/EC/ISRIC (2003) world soil resources
map (scale 1:30,000,000 approx)), major landforms, topography,
percentage of cultivated area and vegetation structure is given in Table 1.

2.2. Sample preparation and analyses

Samples were analyzed at the World Agroforestry Centre's Spectral
Diagnostics Laboratory in Nairobi, Kenya using TXRF and X-ray diffrac-
tion spectroscopy (XRD) spectral methods on all samples collected.
Soil samples were first air-dried and passed through a 2-mm sieve be-
fore sub sampling to 10 g using coning and quartering technique to en-
sure homogeneity of the sample. The 10 g subsamples were oven-dried
at 40 °C and then 5 g were ground to a fine powder (b200 μm) using a
Retsch RM 200 mill (Retsch, Düsseldorf, Germany). Approximately 3 g
of each soil sample was then further ground to b50 μmusing aMcCrone
micronising mill (McCrone, Westmont, U.S.A.). The TXRF methodology
was used to analyze total elemental concentrations in each soil sample
using a S2 PICOFOX™ TXRF spectrometer (Bruker AXS Microanalysis
GmbH, Germany). Based on a recently developed and tested method
(Towett et al., 2013), 50 mg of the finely ground (20–50 μm) sample
was mixed with 2.5 ml of Triton X100 (Fischer Scientific, UK) solution
(0.1 vol.%) to form a soil suspension and spiked with 40 μl of
1000mg l−1 Selenium (Fluka Analytical, Germany) as the internal stan-
dard. The suspension was placed into an ultrasonic water bath at room
temperature and sonicated in a continuous mode for 15 min, and then
mixed well using a digital shaker. 10 μl of the turbid soil solution was
immediately dispensed on to a clean siliconizedquartz glass sample car-
rier and dried for 10–15min at 52 °C on a hot plate (Staurt® SD300) in a
clean laminar flow hood. Samples were analyzed in triplicate with data
acquisition time of 1000 s per sample. The evaluation of spectra and el-
ement quantification were performed using the software program
SPECTRA 6.3 (Bruker AXS GmbH, Germany). Mineral profiling was
done using XRD spectroscopy where finely ground (b50 μm) samples
were loaded into steel sample holders and analyzed using a Bruker D2
Phaser XRD spectrometer instrument that was equipped with a
LYNXEYE compound silicon strip, 1-dimensional detector with Theta/
Theta geometry. The instrument was integrated with the DIFFRACplus
TOPAS graphics based, non-linear least squares profile analysis pro-
gram. Identification of X-ray minerals was achieved by comparing the
X-ray diffraction pattern (diffractrogram) obtained from an unknown
samplewith an internationally recognized database (powder diffraction
file, PDF) containing reference patterns with more than 70,000 phases.
Quantitative phase analysis of crystalline powder samples was then



Fig. 1. Graphics illustrate the centroid locations of 34 AfSIS sentinel sites sampled and available for this study. The basic sampling unit (sentinel site) is a 10 × 10 km area (black squares),
within which there is a spatial hierarchy of 16 randomized LDSF clusters down to 1000 m2 plots. The layout of each sentinel site sampled for this study consisted of 16 clusters
(white circles).
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done using a full pattern fitting method (Rietveld method e.g., using
TOPAS program).

2.3. Data analysis

In TXRF analysis an important consideration is the capability of the
instrument to detectwhether anelement is present or not in a specimen
and to be able to show with some defined statistical certainty that a
given element is present if its concentration is greater than a lower
limit of detection (LLD) (Rousseau, 2001). The LLD, which in this
study is assumed to be the concentration equivalent to three standard
counting errors of a set of measurements of the background intensity
(Bruker, 2007), was calculated using the following formula
(Klockenkämper, 1997):

LLDi ¼
3 � Ci �

ffiffiffiffiffiffiffiffiffi

NBG
p

Ni
; ð1Þ

where LLDi = LLD of the element i; Ci = concentration of the element i;
Ni = area of fluorescence under peak in counts; and NBG= background
area subjacent the fluorescence peak.

We excluded from our dataset elements that were not accurately es-
timated using the TXRF technique as outlined by Towett et al. (2013),
leaving us with 17 elements (Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn,
Ga, Sr, Y, Ta and Pb) out of 38 elements quantified by the technique.
Since knowing that an element concentration below a given minimum
detectable value is useful, we developed a procedure for assigning
values to the LLD. In order to develop the analysis, we first of all made
scatter plots of the total element concentration values against the LLD
values calculated according to equation. We took the 25th percentile of
the LLD values as the LLD limits for trace elements: Cu, Zn, Ga, Sr and
Y b 0.2 mg kg−1, Al b 208 mg kg−1, P b 42 mg kg−1, K b 8.6 mg kg−1,
Ca b 4.1 mg kg−1, Ti b 1.6 mg kg−1, V, Cr b 1.1 mg kg−1, Mn,
Fe b 0.9 mg kg−1, Ni b 0.3 mg kg−1, Ta b 0.1 mg kg−1, and
Pb b 0.4 mg kg−1. We substituted the missing values with the 25th per-
centiles of average LLD values of the respective elements. The approach
was similar to that used by Reeves and Smith (2009) in their examina-
tion of mid- and near-infrared diffuse reflectance spectroscopy as possi-
ble tools for the determination of major and trace elements in soils
where they replaced any value below the method detection limit with
one-half the detection limit prior to statistical calculations.

Concentrations of these elements showed positive skewness in fre-
quency distributions for most of the elements. Therefore, the appropri-
ate transformation to achieve close to statistical normality of each
variable was done before proceeding with multivariate data analysis.
We then established total concentrations of elements for soils occurring
within particular sites sampled for this study, and documented variation
in their concentration and explored the possibility of finger-printing
complete element profiles. We used a principal component analysis
(PCA) based on a correlation matrix using the R package “FactoMineR”
(Lê et al., 2008) to explore the variation and view the interactions be-
tween different element concentrations and to detect sample patterns
and variable relationships within and between the sites. To explore
the proportion of variance for each element between sites, between
clusters within site, depth, site and depth interaction and residual
variance, we performed a mixed model analysis of variance using the
following PROC MIXED statement:

model log elementð Þ ¼ =ddfm ¼ kr residual outp ¼ resid;
random site; random depth; random
site � depth; random site � cluster

ð2Þ

where log = natural log; ddfm = specifies the method for computing
denominator degrees of freedom; kr=Kenward-Roger; outp=output;
and resid = residuals.



Table 1
Site description: location, average elevation, annual total precipitation, monthly temperatures ranges, major soil classes, topography (toposequence), percentage of cultivated area and landuse of the 34 sentinel sites fromwhich the soil samples used
for this study were collected.

Site Country Lat Long Elev (m) Precip (mm) Temp range (°C) Soil class* PosToposeq Cultivated area (%) Landuse

Ajumako Ghana 5.408 −0.745 63.1 1217.8 23.6–31.7 Acrisols, Alisols, Plinthisols Midslope 75 –
Bondigui Burkina Faso 10.913 −3.546 329.3 1002.3 24.4–37.4 Lixisols Mid-footslope 44 Wooded grassland
Boumeoul Guinea 11.935 −13.144 100.5 1692.9 24.1–38.7 Plinthosols Upland footslope 31 Woodland
Bukwaya Tanzania −3.024 33.050 1197.2 876.4 18.6–30.8 Vertisols Upland–bottomland 59 Cropland/shrubland
Chica_b Mozambique −14.714 39.873 275.6 1025 20.2–32.2 Arenosols Midslope 27 Thicket/bushland
Chiculecule Mozambique −22.836 35.302 70.3 911.7 20.5–31.8 Arenosols Upland 52 Cropland/woodland
Chinyanghuku Tanzania −6.895 36.129 902.8 600.3 18.6–31.2 Lixisols Midslope–bottomland 20 Cropland/bushland
Dambidolo Ethiopia 8.613 35.015 1348.8 1349.3 16.1–31.6 Nitisols, Andosols Upland–bottomland 66 Cropland/woodland
Finnkolo Mali 11.313 −5.502 409.1 1083 23.8–37 Lixisols Footslope 63 –
Fisenge Zambia −13.094 28.477 1249.6 1239.3 16.7–31.6 Ferralsols, Acrisols, Nitisols Upland–midslope 63 Cropland/wooded grassland
Fria Guinea 10.507 −13.393 193.2 2619.2 23.5–37.8 Leptosols Midslope–footslope 63 Cropland/wooded shrubland
Ibi Nigeria 8.138 9.894 133.5 1113.2 24.1–37.1 Fluvisols, Gleysols, Cambisols Midslope–bottomland 47 Shrubland/cropland
Ihassunge Mozambique −18.013 36.832 7.9 1316.3 23.3–32.7 Calcisol, Cambisol, Luvisol Bottomland 81 Cropland
Imorun Nigeria 6.753 4.658 113.4 1723.3 23.6–33.1 Acrisols, Alisols, Plinthosols Upland–midslope 63 Forest
Itende Tanzania −6.891 34.208 1216.5 630.6 17.6–30.3 Acrisols, Alisols, Plinthosols Upland–midslope 0 Woodland
Katsina Ala Nigeria 7.014 9.342 175.5 1643.1 23.3–35 Lixisols Upland–bottomland 87 –
Kiberashi Tanzania −5.346 37.482 1109.9 758.1 16–28.8 Lixisols Midslope 25 Forest/woodland
Kidatu Tanzania −8.036 37.303 319.4 1368.1 23.4–30.5 Lixisols Upland 0 Woodland
Kisongo Tanzania −3.355 36.541 1328.8 875.5 16.1–28.4 Nitosols, Andosols Midslope–footslope 44 –
Koloko Mali 12.483 −6.296 292.1 899.3 25.3–38.3 Lixisols Upland–bottomland 81 Cropland
Kontela Mali 14.809 −10.999 67.1 603.7 27–41 Lixisols Footslope/bottomland 25 Shrubland/grassland
Kubeasi Ghana 6.723 −1.277 229.3 1473.6 22.2–33.3 Acrisols, Alisols, Plinthosols Upland–footslope 56 –
Kutaber Ethiopia 11.296 39.607 2515.7 1091.4 10.3–25.5 Nitosols, Andosols Midslope–footslope 63 Cropland/shrubland
Lambussie Ghana 10.896 −2.649 308.1 961.5 24.5–37.3 Lixisols Midslope 87 Cropland/shrubland
Macassangila Mozambique −13.407 35.495 1109.4 1228.1 17.8–29.3 Ferralsols Midslope 45 Woodland/grassland/cropland
Marafa Kenya −2.634 39.546 165.5 687.2 22.6–32.9 Calcisols, Cambisols, Luvisols Bottomland 0 Shrubland
Mbalambala Kenya −0.126 39.027 217.4 321.1 22.1–36.3 Calcisols, Cambisols, Luvisols Upland 0 Shrubland
Mbinga Tanzania −11.091 35.161 983.4 1328.1 19.1–29.5 Lixisols Midslope 31 Woodland
Mega Ethiopia 4.182 38.296 1540.1 592.1 12.6–27.8 Vertisols Bottomland 0 Bushland/shrubland/grassland
Merar Ethiopia 9.602 42.701 1897.6 789.1 14.2–26.3 Calcisols, Cambisols, Luvisols Upland 58 Cropland/shrubland/grassland
Morijo Kenya −1.719 35.811 2213.2 869.5 11.1–23.9 Calcisols, Cambisols, Luvisols Midslope–footslope 6 Shrubland/grassland
Nkhata Bay Malawi −11.626 34.239 551.1 1672.8 21–30.4 Ferralsols, Acrisols, Nitosols Midslope–bottomland 69 Cropland/woodland/grassland
Pandambili Tanzania −6.084 36.474 1086.8 727.3 16.7–31.4 Lixisols Bottomland 6 Grassland
Thuchila Malawi −15.940 35.329 708.9 1517 19.3–30.7 Lixisols Upland 94 Cropland

Lat— latitude; Long— longitude; °C— degree centigrade; Elev (m)— average elevation inmeters; Precip (mm)— average total precipitation inmm; Temp range—monthly temperature ranges; PosTopoSeq— average topographic position at the site
level. *Major soil classification in the site according to IUSS Working Group WRB, 2014. Elevation, precipitation and temperature data were calculated using the WorldClim sets of climate layers (climate grids) for Africa with a spatial resolution of
about 1 km2 (Hijmans et al., 2005). The soil classifications are based on the IUSSWorking GroupWRB (2014) and the FAO/EC/ISRIC (2003) world soil resources map (Scale 1:30,000,000 approx), while the other site description data were extracted
from the Land Degradation Surveillance Framework (LDSF) database used in AfSIS.
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The correlations among the five parameters (sites, between clusters
within site, depth, site and depth interaction and residual variance)
were modeled using compound symmetry covariance matrix. The
model was fitted by the RestrictedMaximum Likelihood (REML) meth-
od in the SAS MIXED procedure (SAS Institute, 2011). A summary of
some of the important options invoked in the SAS PROC MIXED state-
ment by function and the class level information for three classes
(site, cluster and depth), are summarized in Annex Table A2. In order
to examine relationships between element fingerprints (principal com-
ponents (PCs)) and site characteristics including elevation, climate,
major landform, landform designation, vegetation type, management
(cultivation) and mineralogy, we used the R package “randomForest”
(Breiman, 2001; Liaw and Wiener, 2002) with an ‘out-of-bag’
(RF-OOB) test sample being held out and used to estimate model
error and for the calculation of variable importance. We accessed the
extent to which site and soil-forming factors could explain the variation
in the element composition of the soil. Specific research questions
addressed included:

(i) Are patterns of elemental concentrations related to the site
factors and if so, which are dominant?

(ii) Does element concentration clustering relate to mineralogy?

For the first question, we performed a Random Forests (RF) regres-
sion (R-version 2.15.3) of the first 5 PCs of the TXRF element concentra-
tion data against site factors while for the second question, we explored
the RF regression of elements PCs against mineral composition. We
included and excluded different variables to test their effects on the
overall model and variable importance.

3. Results and discussion

3.1. Total elemental concentrations

As expected, there was wide variation in total element concentra-
tions (Table 2), which was presumably attributable to differences in
parent materials between sites and to local pedologic and hydrological
factors within sites or due to differences in management (Table 1). For
Table 2
Summary statistics of themedian, mean, minimum, percentiles and maximum values of the tot
and the reported concentration mean ranges of background contents of elements in the world

Element Values compiled from this study (mg kg−1)

Median Mean Min 2.5th

%ntile
25th

%ntile
75th

%ntile
97.5th

%ntile
Max

Al 34,187 33,927 94 251 21,372 45,719 68,242 89,06
P 42 143 25 42 42 44 1169 235
K 7902 10,893 291 653 2749 16,802 34,366 77,89
Ca 1908 9780 82 173 682 8576 68,638 426,43
Ti 3193 4264 2.6 30 1921 5533 13,068 25,61
V 19 37 0.7 1.1 7.2 44 160 39
Cr 45 64 0.7 1.4 24 78 250 59
Mn 276 466 1.6 13 138 637 1598 657
Fe 20,789 27,954 20 234 9567 39,068 91,014 181,69
Ni 12 19 0.3 0.9 5.0 24 72 36
Cu 13 17 0.3 1.0 6.0 22 58 11
Zn 20 29 0.3 1.4 10 42 91 13
Ga 7.8 8 0.2 0.2 4.3 12 20 3
Sr 47 118 1.2 3.1 20 129 807 198
Y 9.2 13 0.2 0.5 4.8 18 44 10
Ta 2.7 3 0.1 0.1 1.1 4.5 9.1 1
Pb 18 37 0.3 0.4 8.4 38 189 63

Given are mean values for various soils: A—worldwide mean contents after Kabata-Pendias an
Mukherjee (2007)); C — Japan agricultural soils, after Takeda (2004) cited by Kabata-Pendias a
Pendias and Mukherjee (2007)); E — data for U.S. and Canada soils, after Burt et al., 2003 (cit
median values for Africa compiled from Ghana soils, after Antwi-Agyei et al. (2009) and South

a Values compiled by Kabata-Pendias and Mukherjee (2007).
b Values compiled from Kabata-Pendias and Mukherjee (2007), Hooda (2010), U.S. EPA Ver
example, the total concentration of P varied from 25 to 2358 (mean
143) mg kg−1 across the 34 sentinel sites, and K and Ca values ranged
between 291–77,898 and 82–426,431 mg kg−1, respectively (Table 2).
These results of total elemental analyses of soils in the different sentinel
sites selected across SSA were within the reported ranges of worldwide
soils (Table 2). However, the mean values for V, Zn and Sr were below
the mean worldwide contents (Kabata-Pendias and Mukherjee, 2007)
by 23 (38%), 33 (53%) and 29 (20%) mg kg−1 respectively, while the
mean values obtained for soils of SSA exceeded the mean worldwide
concentrations by 48 (11%), 12 (48%), and 22 (52%) mg kg−1 for Mn,
Pb, and Cr respectively.

3.2. Principal component analysis of the total elemental concentrations

The PCA of element concentrations revealed that patterns in total el-
ement concentrations between sites appeared to relate to differences in
mineralogical ‘functional groups’ (Fig. 2a–b). The pattern of clustering of
the individual minerals and sorting of heavy minerals (V, Pb, Ni, Cr, Cu
Ti, and Fe) along the positive Dim 1 axis is apparent (Fig. 2a). The first
two PCA axes together accounted for 46.6% (Dim 1 — 32.5%, and Dim
2 — 14.1%) of the total variance within the data set (Fig. 2a). The ele-
ments K, Ca, Ti, Fe and Sr were predominantly associated with Dim 1
while Dim 2 was dominated by elements Al, Ni and Ga. Elements Cr,
Mn and Zn were predominant in Dim 3 (Fig. 2b, Annex Fig. A1), while
only V was predominant in Dim 4 and the elements P, Cu, Y, Ta and Pb
were predominant in Dim 5 (Annex Fig. A1).

In the results, clayminerals in the PCA plot are represented by some
elements, e.g., Al, Cr, V, Cu, Fe, and Ti, most of which fell along the pos-
itive Dim 1 axis (Fig. 2a), similar to results reported by Cannon and
Horton (2009) and Grunsky et al. (2009), i.e., that the clay factor com-
monly includes, although not exclusively, the elements Al, Cr, Cu, Ni,
V, and Fe, all elements that are common in trace amounts in clay min-
erals or adsorbed to them. In the PCA results, the elements typical of
feldspars and carbonate minerals (Ca, K and Sr) (Fig. 2a) indicate the
strong association of Ca and Sr which are reported to be highly correlat-
ed (r = 0.98, p = 0.0001) and having similar chemical properties, Sr
readily substitutes for Ca in the structure of carbonate minerals
(Marzecová et al., 2011). In this study, the sites with a strong Ca–Sr
al element concentrations (mg kg−1) of 1074 soil samples collected from 34 sentinel sites
soils.

Reported mean and ranges of background contents of elements in crust and
worldwide soils (mg kg−1)

Crustal
Averagea

A B C D E F Reported worldwide
rangesb

8 – – – – – – – 10,000–40,000
8 – – – – – – – –
8 – – – – – – – –
1 – – – – – – – –
1 4400 – 3700 – 15,480 2900 – 200–24,000
3 135 60 69 180 320 80 – 5.0–500
8 100 42 22 58 86 54 72 1–1500
5 900 418 411 – 535 550 – b7–N9000
1 – – – – – – – 1000–550,000
4 20 18 13 26 25 19 39 0.2–500
4 55 14 17 48 109 25 17–29 1.0–250
8 70 62 65 89 73 60 45–47 10–602
1 15 1.2 8.9 20 31 17 – 0.4–70
5 375 147 163 190 – 240 – 32–N1000
9 33 12 27 89 73 60 – 16–33
6 2.0 1.1 1.1 1.7 2.3 – – 0.8–5.3
9 14 25 18 24 22 19 18–22 2.0–16,338

dMukherjee (2007); B— Sweden soils after Eriksson (2001) (cited by Kabata-Pendias and
nd Mukherjee (2007); D —Median for soils in Brazil, after Licht (2005) (cited by Kabata-
ed by Kabata-Pendias and Mukherjee (2007)) and Haluschak et al. (1998); F — Reported
African soils, after Herselman (2007).

ification Report (2006), and Haluschak et al. (1998).



Fig. 2. Biplots (arrow sizes are proportional to the “initial” variability in the elements present) based on the principal component Dim 1 vs Dim 2 (a) and Dim 1 and Dim 3 (b), on the log
transformed data of the soil total element concentration from all sites analyzed.
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relationship includedAjumako, Dambidolo, Finnkolo, Fisenge, Ihasunge,
Imorun, Itende, Kiberashi, Kisongo, Koloko, Kutaber, Lambussie,
Macassangila, Mbalambala, Mega, Merar, Morijo, Nkhata Bay and
Pandambili (Annex Fig. A2). The distribution of Sr in minerals is largely
controlled by Ca and is also strongly controlled by parent rocks and cli-
mate but is also reported to likely concentrate in mafic igneous rocks
and in carbonate sediments (Kabata-Pendias and Mukherjee, 2007;
Marzecová et al., 2011), such as what we find in sites Mbalambala,
Merar and Morijo. Calcium, Sr and K co-occurred together and these
could be associated with weathering of silicate bearing minerals
(Fig. 2a). In addition, clay minerals have a large capacity to adsorb Sr,
and most argillaceous sediments are enriched in this element (Kabata-
Pendias and Mukherjee, 2007), for example in sites Bondigui,
Chinyanguku, Finnkolo, Katsina Ala, Kiberashi, Kidatu, Koloko, Kontela,
Lambussie, Mbinga, Pandambili and Thuchila with Lixisols.

Similar to what was reported by Acosta et al. (2011), K occurred in
opposite direction to elements like Cu and Fe in the PCA results, indicat-
ing a negative relationship between K and Fe and Cu in soils. For exam-
ple, K is readily leached from the soil profile, therefore highlyweathered
soils, for example those with high Al and Fe concentrations, have low K
concentrations. The positive relationship between Pb and Zn in our
study can be explained because Pb was found to coexist with Zn in the
internal growth of a crystal lattice (Acosta et al., 2011). Lead and Zn
are reported to be associated with Al- and/or Mn-bearing minerals
such as albite, anorthite and biotite while MnO minerals are the main
adsorbent for Pb in carbonate rocks under weathering (Acosta et al.,
2011). The cluster co-association of occurrence between Cu, Zn and Pb
may also be the result of weathering of sulfide minerals similar to the
results reported by Adebiyi et al. (2005).

The study of regional variations of tracemetals in soils is very impor-
tant for pollution control. The TXRF techniquehas the potential to detect
heavy metal pollution in soils. Soil pollution is often evaluated by com-
paring heavy elemental concentrations with the related environmental
quality guidelines (EQGs) with respect to relevant background levels
(Luo et al., 2012). The EQGs have been developed for soil element con-
centration values in attempts to determine and predict concentrations
above which effects occur and below which effects do not occur
(Chapman et al., 2003), but these values vary by jurisdiction, land use
and by proponent. Presently EQGs are not available for tropical Africa
soils. However, none of the soils analyzed in this study had heavy
metal concentrations considered to be polluted. The cluster co-
occurrence of heavy minerals (Ni, Cu, Zn, V, Pb, Cr, Fe, Ti, and Fe)
along the positive Dim 1 axis is apparent (Fig. 2a). Similar to what is
observed in the heavy metal clustering in this study, the accumulation
of heavy metals with the clay fraction could be attributed to the high
surface area and the presence of clay minerals, organic matter, and
Fe–Mn oxides (Qian et al., 1996). Rodríguez et al. (2008) made an asso-
ciation of heavy metals with the factors in a PCA to indicate the hypo-
thetical sources of these elements (lithogenic, anthropogenic, or
mixed). We thus also infer that the concentrations of Cu, Zn, Cr, Pb,
and Ni in our study (Fig. 2a–b) could serve as proxies relating to differ-
ences arising from lithogenic or anthropogenic origin (Table 1). Accord-
ing toHooda (2010), a high level of Cu is typical in soils of various parent
materials for example loams developed on basalt rock (Cambisols) or
some tropical soils (e.g., Ferralsols), however in this study the highest
level of Cu was found in a soil classified as a Lixisol from Bondigui site
(Tables 1 and A7). Further evidence for this inference was tested using
the Random Forests algorithm where we explored the relationship be-
tween the total element concentrations with mineralogy and other
site characteristics, discussed below.

3.3. Elemental variation between and within sites

There were substantial variations in total element composition both
within and between sites (Fig. 3a–b and Annex Fig. A2). The first two
principal components explained between 49 and 84% of the total variabil-
ity for the different sentinel sites (Annex Fig. A2). Elements clustered out
differently in the different sample sets, indicating awide variation in asso-
ciations (Annex Fig. A2). As an example of the site differences, Fig. 3a–b,
Annex Fig. A2ac and A2ad presents the scatter and biplots of the Mega
and Merar sentinel sites, both in Ethiopia, showing different elements
clustering out separately indicating their different functional properties.
The PCA of total element concentration confirms the fact that there are
known specific differences e.g., between the Mega site, which is a gently
undulating bottomland lying in a level plain with a mix of bushland,
shrubland and grassland used for extensive grazing located on flat sur-
faces in central mountainous range around 1540 m above sea level. On
the other hand, theMerar site has a major landform that is also designat-
ed as level plain but located in an upland topography lying at an average
altitude of 1898 m above sea level used for a mix of cropland, shrubland
and grassland (Table 1). The two sites also have similar precipitation
amounts and temperature ranges (Table 1). The results provide further
evidence to the apparent relation in the PCA to differences in mineralog-
ical “functional groups” and to the fact that both soils have different par-
ent materials (i.e., Vertisols and Calcisols/Cambisols for Mega and Merar
respectively), however, the clearly distinct patterns and differences



Fig. 3. Scatter plots of individual site factors, based on the principal component Dim 1 vs Dim 2 (a) and Dim 1 and Dim 3 (b), on the log transformed data of the soil total element con-
centration from all sites analyzed.
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could also be explained by management and vegetation at the different
sites (Table 1). For example, the Mega site which lies on an extensive
rangeland area with Vertisols representing major management con-
straints brought about by the physical properties and the soilmoisture re-
gime of Vertisols and since they are used only for extensive grazing, they
are consequently poor in nutrients because of no external inputs (Vågen
et al., 2013). The total element concentration analysis of the soils from
the Mega site revealed very low concentrations of all elements with the
exception of Ca (Tables A4–A7). Fig. 3a–b acknowledges the fact that
soil-forming factors are important drivers of element concentrations in
soils since it shows sentinel sites with similar characteristics clustering
together. The PCA patterns in total element concentrations within and
between the sites, (Fig. 3, and Annex Fig. A2), could thus be used as
proxies for natural nutrient status and the processes that might control
the variation and differences in mineralogical “functional groupings”,
and increase the wealth of knowledge of concentrations and spatial
distribution of naturally occurring minerals in the soils of SSA.

3.4. Restricted maximum likelihood analysis of the proportion of variance

There were significant (P b 0.05) variance proportions for site, clus-
ter nested within site, as well as depth nested within cluster and site,
and the interactions between site and depth (Table 3). The greatest
proportion of total variance and number of significant variance compo-
nents occurred at the level of site (55–88%) followed by the cluster
nested within site levels (10–40%). This was not surprising given that
we would expect lower variation within depths at a given sampling
location. However, for the element P, a large proportion of the samples
(75%) were at or below the 25th percentile LLD concentration of the an-
alytical measurements. Consequently, our results concerning variation
of P between and within sentinel sites should be interpreted with cau-
tion. Nevertheless, this may have implications for natural production
systems and agriculture, as it may also indicate low potential P supply
from minerals because TXRF is capable of detecting minerals rich in P.
There were also 3 elements with a large error of variance (Al, Ti and
Ga). Overall site contributed to more than 55% of the total variance of
all the 17 elements analyzed (Table 3). Our results differed with those
reported by Laiho et al. (2004) who examined the proportion of vari-
ance of the elements K, Zn and Mn in soils from 11 peatland forest
sites in Central Finland and reported strong variation among the sites,
but even for these elements, the within-site variation contributed the
biggest proportion of the total variance for the depth 0–30 cm. Howev-
er, the cluster nested within site and site interaction contributed to at
least 10% of the total variance of all the 17 elements analyzed
(Table 3). The observed strong within site as well as between site
variations in the elements in our study were expected to be highly



Table 3
Covariance parameter estimates and their percentage contribution to the total variance for site, cluster nested within site and depth nested within cluster and site and their interactions.

Element %LLD# n Site Site ∗ cluster Site ∗ depth Depth Residual

Estimate %Tot var Estimate %Tot var Estimate %Tot var Estimate %Tot var Estimate %Tot var

Al 2 1068 0.966 88 0.112 10 0.004 0.4 0.005 0.45 0.016 1.4
P 75 1059 0.718 76 0.198 21 0.002 0.2 1.4 ∗ 10−21 b0.01 0.025 2.6
K 0 1065 0.913 71 0.354 28 0.003 0.2 6.8 ∗ 10−21 b0.01 0.010 0.8
Ca 0 1068 2.186 79 0.480 17 0.034 1.2 0.017 0.60 0.051 1.8
Ti 0 1067 1.398 87 0.199 12 0.001 0.1 0.001 0.04 0.014 0.9
V 7 1067 1.463 77 0.379 20 0.009 0.5 0.008 0.39 0.053 2.8
Cr 2 1068 0.808 65 0.384 31 0.005 0.4 0.006 0.46 0.039 3.2
Mn 0 1067 1.007 68 0.393 27 0.023 1.6 0.008 0.51 0.040 2.7
Fe 0 1066 1.459 80 0.335 18 0.005 0.3 0.009 0.47 0.026 1.4
Cu 0 1066 0.705 69 0.285 28 0.002 0.2 0.003 0.27 0.027 2.6
Ni 0 1067 0.745 55 0.540 40 0.014 1.1 0.008 0.56 0.049 3.6
Zn 0 1067 0.924 79 0.217 19 0.001 0.1 0.001 0.12 0.026 2.2
Ga 3 1067 0.677 77 0.164 19 0.006 0.7 0.009 1.01 0.024 2.7
Sr 0 1069 1.554 83 0.299 16 0.004 0.2 0.000 0.01 0.017 0.9
Y 1 1066 0.721 66 0.309 28 0.004 0.3 0.000 0.00 0.061 5.6
Ta 6 1069 1.015 73 0.313 23 0.005 0.4 0.004 0.28 0.050 3.6
Pb 2 1069 1.103 57 0.689 36 0.011 0.6 0.009 0.45 0.117 6.0

%LLD#= percentage of the total number of samples (n = 1074) with values at or below the LLD concentration; n = number of observations used after removing extreme studentized
residuals; Estimate = log value estimated by the model; % Totvar = percentage contribution of the parameter estimate to the total variance. Model fitted with the SAS System Mixed
Procedure with the following parameters: covariance structure = variance components; estimation method = REML; residual variance method = profile; fixed effects SE method =
Kenward-Roger.
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diagnostic of soil fertility potential because site and the interaction of
cluster nested within site contributed more than half of the total vari-
ance for all elements (Table 3).

3.5. Relationship of total elemental composition with mineralogy and other
site characteristics

In order to confirmwhether site or soil-forming factors (e.g., miner-
alogy, climate, topography and vegetation) are important drivers of
total elemental concentrations in the soil, we performed a Random For-
ests (RF) regression of the factors against the first 5 principal compo-
nents of the TXRF element concentration. The RF regression allowed
us to view the importance of the predictor variables and below we dis-
cuss only the top four variables in decreasing order of importance for
the first 3 principal components or dimensions which explained as
much as 57% of the variability of the total element concentrations.

3.5.1. Elemental concentration fingerprints versus site factors
A regression of 6 predictor variables namely soil class, climate zones,

cluster, plot flooding, depth and topographic position showed that the
RF-OOB models had an overall accuracy (R2) of 0.59, 0.44 and 0.43 for
dimensions 1, 2 and 3 respectively (Fig. 4a). Themost important predic-
tor variables explaining the variation observed in the first principal
component or dimension 1 of the total element concentration data,
were soil class (based on the IUSS Working Group WRB (2014) and
the FAO/EC/ISRIC (2003) world soil resources map (scale 1:30,000,000
approx)), climate zone (Köppen–Geiger climatic zones) (Kottek et al.,
2006), topographic position followed by whether the plot is flooded or
not (Fig. 4a). Soil class is very critical in determining the total elemental
compositions of soils in Sub-Saharan Africa. Table 4 gives a breakdown
of the mean total elemental composition by soil class for the sample
suite used in the present study. Total elemental compositions varied
widely according to soil types and the specific pedological processes op-
erating in a given soil type that influence their distribution need to be
taken into account to understand and quantify of the total elemental
composition. However, there is need to take into consideration the un-
certainties associated with spatial predictions using e.g., FAO/EC/ISRIC
soil maps, which are major in many cases and could confound the ana-
lytical data. For the dimension 2, themost important variables were soil
class, climate zone, topographic position, and plot flooding, while for di-
mension 3 the four most important variables were similar to those in
the second dimension (Fig. 4a). When we excluded the climate zone
predictor variable in the regression model and in place of this included
total annual precipitation and average monthly temperature, the re-
gression results showed an overall improved fit (R2) of the models'
overall accuracy of 0.87, 0.74 and 0.70 for dimensions 1, 2 and 3 c
(Fig. 4b). In addition, the order of the most important predictor
variables explaining the variation observed were also changed when
climate zone was removed from the model such that for dimension 1
they were soil class, precipitation, average temperature, followed by
topographic position (Fig. 4b). Topography is the most commonly
considered soil-forming factor and expresses the variation of total
element concentration pattern due to modification of the water
relationships in soils and it influences soil erosion to a considerable
extent (Jenny, 1941).

Since the soil class and climate zone ranked the top most important
variables explaining the variation of the total elemental concentrations'
main pattern of variation in Dim 1, these were both excluded in the RF
model and the predictor variables precipitation, average temperature
retained and consequently the model accuracies were slightly de-
creased to a R2 of 0.79, 0.69, and 0.64 for dimensions 1, 2 and 3 respec-
tively (Fig. 4c). For dimensions 1, 2 and 3, the two most important
variables were then precipitation and temperature followed by position
in the topography and cluster (Fig. 4c). When a new variable ‘landuse’
was introduced in addition to the soil classification according to the
FAO/EC/ISRIC (2003) and IUSSWorking GroupWRB (2014), the overall
model accuracieswere furthermarginally improved to R2 values of 0.87,
0.77 and 0.70 for dimensions 1, 2 and 3 respectively (Fig. 4d). Excluding
the soil class from the model used in Fig. 4d the fit of the models in di-
mensions 1–3 was 0.81, 0.70 and 0.64 R2 respectively (Fig. 4e). The
top most important variable for all the dimensions was temperature
followed by precipitation, topography and landuse in dimensions 1
and 2 while in dimension 3, after temperature, the most important var-
iables were precipitation, landuse followed by topography (Fig. 4e). The
results that landuse was one of the important variables, e.g., ranking
fourth, fourth, and third in dimensions 1, 2 and 3 respectively
(Fig. 4e), supported results by Voortman (2011) that the presence of
different vegetation types is a reliable and precise indicator of differ-
ences in soil chemical properties and that interactions among nutrients
significantly explain differences in vegetation and also the distribution
of vegetation types. These results are interesting in that they imply
that N70% of variation in soil elemental composition patterns can be
predicted using information in existing databases or readily observable
features. The predictor ‘soil depth’ was of least importance for total



Dim 1 (R2=0.59, rmsep=2.25) Dim 2 (R2=0.44, rmsep=1.34) Dim 3 (R2=0.43, rmsep=1.02)
(a)

Dim 1 (R2=0.87, rmsep=0.71)
(b)

Dim 2 (R2=0.74, rmsep=0.62) Dim 3 (R2=0.70, rmsep=0.54)

Dim1 (R2=0.81, rmsep=1.07) Dim 2 (R2=0.70, rmsep=0.75) Dim 3 (R2=0.64, rmsep=0.61)(e)

Dim1 (R2=0.79, rmsep=1.12) Dim 2 (R2=0.69, rmsep=0.73) Dim 3 (R2=0.64, rmsep=0.64)
(c)

Dim 1 (R2=0.87, rmsep=0.72)(d) Dim 2 (R2=0.77, rmsep=058) Dim 3 (R2=0.70, rmsep=0.51)

Fig. 4. Variable importance plots for the first 3 dimensions of the Random Forests regression of TXRF element concentrations against mineralogy and site/soil-forming factors showing the
model accuracies and mean decrease in accuracy (%IncMSE) for site or soil-forming predictor variables (a) excluding precipitation and temperature (b) excluding climate zone but
including precipitation and temperature (c) excluding climate zones and soil class but including precipitation and temperature (d) including soil classification and landuse
(e) excluding climate zones and soil class but including precipitation, temperature and landuse (see Table 1 for predictor parameter description).
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element concentration pattern of variation prediction, suggesting that
neither top- nor subsoils influence much the variation of element
concentration probably due to expected correlations of element
concentrations between the two depths.

3.5.2. Element concentration versus mineralogy composition
Mineralogy data from XRD analysis were extracted for each site and

for this study's analysis we used both raw semi-quantitativemineralogy
data and the dominant mineralogy grouping. In general RF model
Table 4
Breakdown of the mean total elemental composition (mg kg−1) by soil class according to Tabl

Element Acrisols, Alisols,
Plinthosols

Arenosols Calcisol, Cambisol,
Luvisol

Ferralsols Ferralsols, Acri
Nitisols

Al 31,993 19,136 33,338 42,542 40,940
P 42 43 246 210 47
K 9068 11,508 16,520 8717 9145
Ca 1747 3467 36,695 1440 1918
Ti 2800 1343 3354 8564 3640
V 19 5.3 16 30 25
Cr 71 39 56 53 45
Mn 282 192 620 578 341
Fe 21,724 5395 23,579 34,957 23,754
Ni 12 5.2 25 21 21
Cu 13 3.9 14 21 23
Zn 24 8.8 41 41 36
Ga 7.8 4.8 9.0 10 9.0
Sr 36 65 166 54 19
Y 7.1 15 20 10 11
Ta 2.7 0.6 2.5 3.5 5.7
Pb 28 10 20 36 23
performances were acceptable with prediction accuracies for dimen-
sions 1–3 ranging from 0.79 to 0.45 and 0.82–0.61 for raw mineralogy
data and dominant mineralogy groupings respectively (Fig. 5a–b).
These results suggest that patterns of variation in total element concen-
trations are largely due to high variability in mineralogy. The most
important predictor variables explaining the variation in the dominant
mineralogy grouping for dimension 1 were K-feldspars followed by
kaolinite/1:1 clays, then quartz and plagioclase (Fig. 5a). Thus, since
K, Ca, Ti, Fe and Sr were predominantly associated with Dim 1, the
e 1.

sols, Fluvisols, Gleysols,
Cambisols

Leptosols Lixisols Nitisols,
Andosols

Plinthosols Vertisols

12,312 66,925 33,678 50,440 32,143 13,305
44 44 81 620 47 48

7041 3786 10,649 13,830 4114 8484
733 1055 3980 21,798 967 6312

2327 8528 4340 9767 4282 871
18 110 49 75 45 12
44 244 64 68 86 13

114 321 451 1143 309 180
11,294 68,615 29,981 54,288 30,601 8365

4.1 25 20 30 17 8.4
5.6 26 18 28 16 7.5
5.4 23 23 71 16 10
3.0 19 8.0 14 7.5 2.6

26 25 106 455 15 59
11 10 11 26 12 3.4
1.7 5.0 3.2 5.6 3.3 1.1

17 108 46 62 41 14



(a)

(b)

Dim 1 (R2=0.82, rmsep=1.01) Dim 2 (R2=0.62, rmsep=0.91) Dim 3 (R2=0.61, rmsep=0.69)

Dim 1 (R2=0.79, rmsep=1.15) Dim 2 (R2=0.56, rmsep=0.64) Dim 3 (R2=0.45, rmsep=0.98)

Fig. 5. Variable importance plots for the first 3 dimensions of the Random Forests regression of TXRF element concentrations against mineralogy and site/soil-forming factors showing the
model accuracies and mean decrease in accuracy (%IncMSE) for (a) dominant mineralogy groupings and (b) raw semi-quant mineralogy data.
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contents of these elements are presumed to be originating primarily
from parent material as reported by Kabata-Pendias and Mukherjee
(2007) and US.EPA (2006). Lower concentrations of certain elements,
e.g., Ca and K in some soils in our study, could also be explained by a re-
ported breakdown of primary minerals, particularly K-feldspars and
plagioclase (Acosta et al., 2011) or depletion in well-drained soils over
long periods of pedogenic weathering since they are either divalent or
monovalent (Marques et al., 2004). The relationship between clay min-
eralogy composition and K forms and physico-chemical properties has
also been demonstrated by several studies (Sharply, 1989; Surapaneni
et al., 2002; Raheb and Heidari, 2012). Besides the clay content, K-
bearing minerals and clay mineralogy may play a more important role
in determining a soil's extractable K status and thus, the relationships
between clay mineralogy and K can be used in evaluating potential
soil K fertility, prediction of K cycling and plant uptake (Raheb and
Heidari, 2012). Information on the K elemental composition along
with knowledge of mineralogical clay composition can provide insights
into release of K to plants and the need for K fertilizers. For dimension 2
the most important variables were quartz, kaolinite/1:1 clays,
K-feldspars, and oxides (Fig. 5a). Because Al, Ni and Ga were dominant
in Dim 2 (Fig. 3a, Annex Fig. A1), our results are in agreement with
those reported byAcosta et al. (2011) that Al in soils has been attributed
to the formation of clay minerals. Total Al in soil reflects the type of soil
and the underlying geology, being present in the matrix of clays and
other silicate minerals, and highly weathered soils are often high in Al
concentrations (Rawlins et al., 2012). However, at the opposite extreme,
low Al is a marker of organic-rich soils, which contain a smaller propor-
tion of aluminosilicate minerals (Rawlins et al., 2012). For dimension 3
the most important variables were oxides followed by K-feldspars,
plagioclase and kaolinite/1:1 clays (Fig. 5a). While our results showed
that Cr, Mn and Zn were predominant in the Dim 3 (Fig. 2b, Annex
Fig. A1), Zn is reported to be generally associated with Al- and
Fe-containing minerals such as feldspars, micas, pyroxenes and
amphiboles (Acosta et al., 2011).

The most important predictor variables explaining the variation in
the raw mineralogy for dimension 1 were microcline, followed by
hematite, kaolinite and albite; for dimension 2 they were microcline,
calcite, hematite and hornblende; while for dimension 3 they were
hematite, tridymite, albite and nacrite (Fig. 5b). These findings were
also in agreement with a report by Voortman (2011) that the nature
of the key variables explaining the variability of soils are related to the
mineralogy of parent rock and thus we also infer that the mineralogy
of parent rock is a principal factor determining spatial patterns of soil
total element concentrations. Furthermore there is ample evidence
from the literature (e.g., Sharply, 1989; Surapaneni et al., 2002) that var-
iation among soils in crop productivity and response to nutrients is pri-
marily determined by soil mineral composition. Soil tests based on soil
extracts do not characterize all the nutrient pools that determine a soil's
ability to re-supply the soil solution (buffering capacity), such as readily
mineralizable organic P, sorbed P, and slowly extractable K. Total X-ray
fluorescence spectroscopy provides chemical fingerprinting and “func-
tional mineral groupings” that could relate to potential nutrient supply
capacity.

3.6. Element concentration versus mineralogy composition plus site and
soil-forming factors

Since some site factors and mineralogy investigated in this study
separately had a high explanatory power of the patterns of variations
of the total elemental concentrations we tested how much variation
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could be explained when they were combined. In general RF model
performances were improved compared to separate models with pre-
diction accuracies of 0.92, 0.84, and 0.79 for dimensions 1, 2 and 3
(Fig. 6a). The most important variables explaining the main patterns
of variation in total element concentrations were cluster, landuse,
topography, temperature and precipitation (Fig. 6a). Thus all soil-
forming factors (e.g., parent material, climate, topography, manage-
ment (landuse)) were demonstrated to have an important influence
on total elemental concentrations in the soil. The importance of cluster
can be explained by spatial correlation at distances of less than 1 km.
Since cluster was the only non-readily observable variable, we tested
whether predictive performance was reduced or not by leaving out
cluster. In general, the model performances were slightly reduced
with prediction accuracies of 0.90, 0.80 and 0.75 for dimensions 1, 2
and 3 respectively (Fig. 6b).

4. Conclusions

Information on the variation in soil element concentrations at differ-
ent spatial scales is needed for, e.g., planning land use and environmen-
tal management. Knowledge of the concentration and spatial
distribution of naturally occurring elements in the soils of Sub-
Saharan Africa (SSA) is limited and there is a need for a better under-
standing of the factors thatmight regulate the variations. TXRF provides
chemical fingerprinting for inferring soil chemical and physical
functional properties which is of interest in the African soil contexts
for agricultural and environmental management at large scales. The
AfSIS baseline dataset of SSA provides an excellent base for studying
chemical variations in soil composition at the continental scale related
to factors such as mineralogy, climate, topography, vegetation
and land use. Thus, this study helped to establish the baseline
(a)

(b)

Dim 1 (R2=0.92, rmsep=0.47) Dim 2 (

Dim 1 (R2=0.90, rmsep=0.52) Dim 2 (R

Fig. 6. Variable importance plots for the first 3 dimensions of the Random Forests regression of T
model accuracies and mean decrease in accuracy (%IncMSE) for combination of mineralogy an
concentrations of 17 elements for soils occurring within 34 sentinel
sites across SSA and documented variability in total element concentra-
tions within and between sites, which appeared to relate to differences
inmineralogical ‘functional groups’. We observed strongwithin site and
between site heterogeneity in many element compositions which were
related to soil forming factors. The exploratory analyses of the relation-
ships between element composition data and other site factors using
Random Forests regressions have demonstrated that all site or soil-
forming factors (e.g., mineralogy, climate, topography, vegetation and
land use) have an important influence on total elemental concentra-
tions in the soil. The fact that the soil-forming factors are related to
the concentration of the naturally occurring elements in the soil gives
rise to the notion that they might be predicted from the soils' element
composition. The results also implied that N70% of variation in soil
element composition patterns can be predicted using information in
existing databases or readily observable features. Thus, future studies
should investigate the feasibility of quantitatively predicting soil
functional properties from concentrations of elements and the existing
databases or readily observable features e.g., for digital soil mapping.
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