130 research outputs found

    Gene circuit analysis of the terminal gap gene <i>huckebein</i>

    Get PDF
    The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network

    The landscape of DNA repeat elements in human heart failure.

    Get PDF
    BACKGROUND: The epigenomes of healthy and diseased human hearts were recently examined by genome-wide DNA methylation profiling. Repetitive elements, heavily methylated in post-natal tissue, have variable methylation profiles in cancer but methylation of repetitive elements in the heart has never been examined. RESULTS: We analyzed repetitive elements from all repeat families in human myocardial samples, and found that satellite repeat elements were significantly hypomethylated in end-stage cardiomyopathic hearts relative to healthy normal controls. Satellite repeat elements are almost always centromeric or juxtacentromeric, and their overexpression correlates with disease aggressiveness in cancer. Similarly, we found that hypomethylation of satellite repeat elements correlated with up to 27-fold upregulation of the corresponding transcripts in end-stage cardiomyopathic hearts. No other repeat family exhibited differential methylation between healthy and cardiomyopathic hearts, with the exception of the Alu element SINE1/7SL, for which a modestly consistent trend of increased methylation was observed. CONCLUSIONS: Satellite repeat element transcripts, a form of non-coding RNA, have putative functions in maintaining genomic stability and chromosomal integrity. Further studies will be needed to establish the functional significance of these non-coding RNAs in the context of heart failure

    High-throughput sequencing identifies STAT3 as the DNA-associated factor for p53-NF-kappaB-complex-dependent gene expression in human heart failure.

    Get PDF
    BACKGROUND: Genome-wide maps of DNA regulatory elements and their interaction with transcription factors may form a framework for understanding regulatory circuits and gene expression control in human disease, but how these networks, comprising transcription factors and DNA-binding proteins, form complexes, interact with DNA and modulate gene expression remains largely unknown. METHODS: Using microRNA-21 (mir-21), which is an example of genes that are regulated in heart failure, we performed chromatin immunoprecipitation (ChIP) assays to determine the occupancy of transcription factors at this genetic locus. Tissue ChIP was further performed using human hearts and genome-wide occupancies of these transcription factors were analyzed by high-throughput sequencing. RESULTS: We show that the transcription factor p53 piggy-backs onto NF-kappaB/RELA and utilizes the kappaB-motif at a cis-regulatory region to control mir-21 expression. p53 behaves as a co-factor in this complex because despite a mutation in its DNA binding domain, mutant p53 was still capable of binding RELA and the cis-element, and inducing mir-21 expression. In dilated human hearts where mir-21 upregulation was previously demonstrated, the p53-RELA complex was also associated with this cis-element. Using high-throughput sequencing, we analyzed genome-wide binding sites for the p53-RELA complex in diseased and control human hearts and found a significant overrepresentation of the STAT3 motif. We further determined that STAT3 was necessary for the p53-RELA complex to associate with this cis-element and for mir-21 expression. CONCLUSIONS: Our results uncover a mechanism by which transcription factors cooperate in a multi-molecular complex at a cis-regulatory element to control gene expression

    CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression

    Get PDF
    Sjuksköterskeyrket innebär ofta långvarig stress och bristfällig arbetsmiljö. Personalbrist, hög arbetsbelastning och bristande inflytande på arbetsplatsen är orsaker till att sjuksköterskor väljer att sluta inom yrket. För lite forskning gällande den upplevda stressen på arbetsplatsen inom sjuksköterskeyrket råder. Därför finns anledning till ökad kunskap kring ämnet. Syftet med studien är att undersöka i hur hög utsträckning sjuksköterskor upplever stress i sin arbetsmiljö, och studien är baserad på 1044 yrkesverksamma sjuksköterskor över hela landet som är medlemmar i Facebookgruppen ”Sjuksköterskan”. Dessa personer har fått svara på enkäten Work Stress Questionnaire med 21 frågor. Resultatet från denna studie visar att arbetsbelastningen ökat och personalen har inte möjlighet att påverka beslut som tas på arbetsplatsen. Konflikter är också förekommande där chefen, i de flesta fall, inte gör något för att lösa dessa konflikter. Sjuksköterskorna sätter höga krav på sig själva och är mycket engagerade i arbetet, men har ofta svårt att sätta gränser. Resultatet visar också att en hög andel har svårt att hinna med familj, vänner och fritidsintressen. Det finns tidigare studier med samma mätinstrument som visar att arbetsbelastningen och ansvarstagandet har ökat under de senaste åren. Eventuellt kan detta i slutändan innebära en risk för ökad utbrändhet och fler sjukskrivningar

    Methylome of human skeletal muscle after acute & chronic resistance exercise training, detraining & retraining

    Get PDF
    DNA methylation is an important epigenetic modification that can regulate gene expression following environmental encounters without changes to the genetic code. Using Infinium MethylationEPIC BeadChip Arrays (850,000 CpG sites) we analysed for the first time, DNA isolated from untrained human skeletal muscle biopsies (vastus lateralis) at baseline (rest) and immediately following an acute (single) bout of resistance exercise. In the same participants, we also analysed the methylome following a period of muscle growth (hypertrophy) evoked via chronic (repeated bouts-3 sessions/wk) resistance exercise (RE) (training) over 7-weeks, followed by complete exercise cessation for 7-weeks returning muscle back to baseline levels (detraining), and finally followed by a subsequent 7-week period of RE-induced hypertrophy (retraining). These valuable methylome data sets described in the present manuscript and deposited in an open-access repository can now be shared and re-used to enable the identification of epigenetically regulated genes/ networks that are modified after acute anabolic stimuli and hypertrophy, and further investigate the phenomenon of epigenetic memory in skeletal muscle

    Distinct epigenomic features in end-stage failing human hearts

    Get PDF
    Background— The epigenome refers to marks on the genome, including DNA methylation and histone modifications, that regulate the expression of underlying genes. A consistent profile of gene expression changes in end-stage cardiomyopathy led us to hypothesize that distinct global patterns of the epigenome may also exist. Methods and Results— We constructed genome-wide maps of DNA methylation and histone-3 lysine-36 trimethylation (H3K36me3) enrichment for cardiomyopathic and normal human hearts. More than 506 Mb sequences per library were generated by high-throughput sequencing, allowing us to assign methylation scores to ≈28 million CG dinucleotides in the human genome. DNA methylation was significantly different in promoter CpG islands, intragenic CpG islands, gene bodies, and H3K36me3-enriched regions of the genome. DNA methylation differences were present in promoters of upregulated genes but not downregulated genes. H3K36me3 enrichment itself was also significantly different in coding regions of the genome. Specifically, abundance of RNA transcripts encoded by the DUX4 locus correlated to differential DNA methylation and H3K36me3 enrichment. In vitro, Dux gene expression was responsive to a specific inhibitor of DNA methyltransferase, and Dux siRNA knockdown led to reduced cell viability. Conclusions— Distinct epigenomic patterns exist in important DNA elements of the cardiac genome in human end-stage cardiomyopathy. The epigenome may control the expression of local or distal genes with critical functions in myocardial stress response. If epigenomic patterns track with disease progression, assays for the epigenome may be useful for assessing prognosis in heart failure. Further studies are needed to determine whether and how the epigenome contributes to the development of cardiomyopathy

    Effects of Dietary Restriction on Cancer Development and Progression

    Get PDF
    The effects of caloric restriction on tumor growth and progression are known for over a century. Indeed, fasting has been practiced for millennia, but just recently has emerged the protective role that it may exert toward cells. Fasting cycles are able to reprogram the cellular metabolism, by inducing protection against oxidative stress and prolonging cellular longevity. The reduction of calorie intake as well as short- or long-term fasting has been shown to protect against chronic and degenerative diseases, such as diabetes, cardiovascular pathologies, and cancer. In vitro and in vivo preclinical models showed that different restriction dietary regimens may be effective against cancer onset and progression, by enhancing therapy response and reducing its toxic side effects. Fasting-mediated beneficial effects seem to be due to the reduction of inflammatory response and downregulation of nutrient-related signaling pathways able to modulate cell proliferation and apoptosis. In this chapter, we will discuss the most significant studies present in literature regarding the molecular mechanisms by which dietary restriction may contribute to prevent cancer onset, reduce its progression, and positively affect the response to the treatments

    Gene Circuit Analysis of the Terminal Gap Gene huckebein

    Get PDF
    The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network

    The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Get PDF
    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.This work was supported by the following grants: NHGRIU54HG003273 to R.A.G; EU Marie Curie ITN #215781 “Evonet” to M.A.; a Wellcome Trust Value in People (VIP) award to C.B. and Wellcome Trust graduate studentship WT089615MA to J.E.G; Marine rhythms of Life” of the University of Vienna, an FWF (http://www.fwf.ac.at/) START award (#AY0041321) and HFSP (http://www.hfsp.org/) research grant (#RGY0082/2010) to KT-­‐R; MFPL Vienna International PostDoctoral Program for Molecular Life Sciences (funded by Austrian Ministry of Science and Research and City of Vienna, Cultural Department -­‐Science and Research to T.K; Direct Grant (4053034) of the Chinese University of Hong Kong to J.H.L.H.; NHGRI HG004164 to G.M.; Danish Research Agency (FNU), Carlsberg Foundation, and Lundbeck Foundation to C.J.P.G.; U.S. National Institutes of Health R01AI55624 to J.H.W.; Royal Society University Research fellowship to F.M.J.; P.D.E. was supported by the BBSRC via the Babraham Institute;This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pbio.100200

    Identifying micro-inversions using high-throughput sequencing reads

    Full text link
    Background: The identification of inversions of DNA segments shorter than read length (e.g., 100 bp), defined as micro-inversions (MIs), remains challenging for next-generation sequencing reads. It is acknowledged that MIs are important genomic variation and may play roles in causing genetic disease. However, current alignment methods are generally insensitive to detect MIs. Here we develop a novel tool, MID (Micro-Inversion Detector), to identify MIs in human genomes using next-generation sequencing reads. Results: The algorithm of MID is designed based on a dynamic programming path-finding approach. What makes MID different from other variant detection tools is that MID can handle small MIs and multiple breakpoints within an unmapped read. Moreover, MID improves reliability in low coverage data by integrating multiple samples. Our evaluation demonstrated that MID outperforms Gustaf, which can currently detect inversions from 30 bp to 500 bp. Conclusions: To our knowledge, MID is the first method that can efficiently and reliably identify MIs from unmapped short next-generation sequencing reads. MID is reliable on low coverage data, which is suitable for large-scale projects such as the 1000 Genomes Project (1KGP). MID identified previously unknown MIs from the 1KGP that overlap with genes and regulatory elements in the human genome. We also identified MIs in cancer cell lines from Cancer Cell Line Encyclopedia (CCLE). Therefore our tool is expected to be useful to improve the study of MIs as a type of genetic variant in the human genome. The source code can be downloaded from: http://cqb.pku.edu.cn/ZhuLab/MID.NCI NIH HHS [CA182360, R33 CA182360]; NHGRI NIH HHS [HG007352, R01 HG007352]SCI(E)PubMedARTICLESuppl 141
    corecore