73 research outputs found

    Performance optimization and load-balancing modeling for superparametrization by 3D LES

    Get PDF
    In order to eliminate climate uncertainty w.r.t. cloud and convection parametrizations, superpramaterization (SP) [1] has emerged as one of the possible ways forward. We have implemented (regional) superparametrization of the ECMWF weather model OpenIFS [2] by cloud-resolving, three-dimensional large-eddy simulations. This setup, described in [3], contains a two-way coupling between a global meteorological model that resolves large-scale dynamics, with many local instances of the Dutch Atmospheric Large Eddy Simulation (DALES) [4], resolving cloud and boundary layer physics. The model is currently prohibitively expensive to run over climate or even seasonal time scales, and a global SP requires the allocation of millions of cores. In this paper, we study the performance and scaling behavior of the LES models and the coupling code and present our implemented optimizations. We mimic the observed load imbalance with a simple performance model and present strategies to improve hardware utilization in order to assess the feasibility of a world-covering superparametrization. We conclude that (quasi-)dynamical load-balancing can significantly reduce the runtime for such large-scale systems with wide variability in LES time-stepping speeds

    Scaling Analysis on Indian Foreign Exchange Market

    Full text link
    In this paper we investigate the scaling behavior of the average daily exchange rate returns of the Indian Rupee against four foreign currencies namely US Dollar, Euro, Great Britain Pound and Japanese Yen. Average daily exchange rate return of the Indian Rupee against US Dollar is found to exhibit a persistent scaling behavior and follow Levy stable distribution. On the contrary the average daily exchange rate returns of the other three foreign currencies do not show persistency or antipersistency and follow Gaussian distribution.Comment: Revised Final Version. In Press Physica

    The diurnal cycle of shallow cumulus clouds over land: A single-column model intercomparison study

    Get PDF
    An intercomparison study for single-column models (SCMs) of the diurnal cycle of shallow cumulus convection is reported. The case, based on measurements at the Atmospheric Radiation Measurement program Southern Great Plains site on 21 June 1997, has been used in a large-eddy simulation intercomparison study before. Results of the SCMs reveal the following general deficiencies: too large values of cloud cover and Cloud liquid water, unrealistic thermodynamic profiles, and high amounts of numerical noise. Results are also strongly dependent on vertical resolution.These results are analysed in terms of the behaviour of the different parametrization schemes involved: the convection scheme, the turbulence scheme, and the cloud scheme. In general the behaviour of the SCMs can be grouped in two different classes: one class with too strong mixing by the turbulence scheme, the other class with too strong activity by the convection scheme. The coupling between (subcloud) turbulence and the convection scheme plays a crucial role. Finally, (in part) motivated by these results several models have been successfully updated with new parametrization schemes and/or their present schemes have been successfully modifie

    Critical quantum chaos and the one dimensional Harper model

    Full text link
    We study the quasiperiodic Harper's model in order to give further support for a possible universality of the critical spectral statistics. At the mobility edge we numerically obtain a scale-invariant distribution of the bands SS, which is closely described by a semi-Poisson P(S)=4Sexp⁡(−2S)P(S)=4S \exp(-2S) curve. The exp⁡(−2S)\exp (-2S) tail appears when the mobility edge is approached from the metal while P(S)P(S) is asymptotically log-normal for the insulator. The multifractal critical density of states also leads to a sub-Poisson linear number variance Σ2(E)∝0.041E\Sigma_{2}(E)\propto 0.041E.Comment: 4 pages, 4 eps figure

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement
    • 

    corecore