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ABSTRACT
In order to eliminate climate uncertainty w.r.t. cloud and convection
parametrizations, superpramaterization (SP) [1] has emerged as
one of the possible ways forward. We have implemented (regional)
superparametrization of the ECMWF weather model OpenIFS [2]
by cloud-resolving, three-dimensional large-eddy simulations. This
setup, described in [3], contains a two-way coupling between a
global meteorological model that resolves large-scale dynamics,
with many local instances of the Dutch Atmospheric Large Eddy
Simulation (DALES) [4], resolving cloud and boundary layer physics.
The model is currently prohibitively expensive to run over climate
or even seasonal time scales, and a global SP requires the alloca-
tion of millions of cores. In this paper, we study the performance
and scaling behavior of the LES models and the coupling code and
present our implemented optimizations. We mimic the observed
load imbalance with a simple performance model and present strate-
gies to improve hardware utilization in order to assess the feasibility
of a world-covering superparametrization. We conclude that (quasi-
)dynamical load-balancing can significantly reduce the runtime for
such large-scale systems with wide variability in LES time-stepping
speeds.

CCS CONCEPTS
• Applied computing → Earth and atmospheric sciences; •
Computing methodologies → Multiscale systems; Massively
parallel algorithms; Massively parallel and high-performance simu-
lations.
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Introduction
One of the dominant uncertainties in current climate projections is
the estimation of cloud feedback; whereas it is certain that clouds
play a crucial role in the development of the Earth’s albedo and
therefore climate sensitivity, our global circulation models (GCM)
do not yet possess the resolution to represent realistically bound-
ary layer turbulence and convection that determine cloud fields
and emerging mesoscale organization [5]. Furthermore, there is
high demand for realistic meteorological forecasts at sub-kilometer
resolutions, ranging from flood risk assessment to the short-term
prediction of wind farm yields.

Properly resolving the turbulent overturning motion of air and
humidity within the atmospheric boundary layer requires grid res-
olutions typically of the order of 100 m, which is still orders of mag-
nitude beyond state-of-the art GCM’s and non-hydrostatic regional
weather models. Hence these models rely on a complex system of
process parametrizations, which gives rise to model uncertainties
and biases [6].

On the other end of the spectrum of model resolutions, the large
eddy simulations (LES) reside. At these scales, turbulence is well
represented due to self-similarity in the inertial sub-range, convec-
tive up- and downdrafts arise from explicitly resolved dynamics
and mesoscale phenomena such as cold pools emerge naturally. It
is, however, computationally not feasible to cover the globe with a
single LES.

One strategy to overcome this barrier is superparametrization
(SP) [1], a technique where GCM parametrizations have been re-
placed by independent sub-models within each grid column. The
basic idea is to force the sub-models by the GCM state and let them
re-distribute momentum, heat, and humidity vertically. The forcing
on the LES models has a relaxation period equal to the GCM time
step and acts purely with respect to the horizontal slab average ⟨q⟩,

fq (tn ) =
Q(tn ) − ⟨q(tn )⟩

∆t
, (1)
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where Q and q denote the corresponding prognostic state variables
in respectively the GCM and small-scale models. After progressing
the latter towards the arrival point of the global model, the models
are coupled via a local tendency proportional to the change in the
horizontally-averaged state,

Pn+1Q =
⟨q(tn + ∆t)⟩ − ⟨q(tn )⟩

∆t
(2)

The advantage of this approach is firstly practical: with moderate
adjustments to the weather model code we can replace its physics
parametrization scheme with a more realistic cloud-resolving sub-
model. Secondly, there are performance benefits as the LES models
can run completely independently –they usually have periodic
boundary conditions in the horizontal domain– which drastically
limits inter-node communication1.

From a performance modeling perspective, it is expected (and
observed) that the resulting performance of the SP model is deter-
mined by the LES models, which have much smaller time steps than
the global model. It is therefore essential that the implementation of
SP allows the LES instances to run in parallel while the GCM awaits
the time stepping and determines the collective synchronization
point.

The purpose of this paper is to study the performance scaling
of this model with growing number of superparametrizing LES
instances, describe optimizations that we have implemented and
explore new strategies to reduce the time-to-solution or consumed
resources. Our parallel coupling implementation, load-balancing
strategy and performance modeling may apply to other multiscale
systems where micro-models run concurrently and independently
to simulate sub-grid features of a large-scale model.

Superparametrization of OpenIFS by DALES
In our setup [3], we have coupled the ECMWF OpenIFS code to
DALES through the coupling framework OMUSE [7]. This Python
package is based upon the AMUSE platform [8] which provides
automatic communication between a master Python script and the
model components [9], wrapped into Python classes. This interface
is nonrestrictive and provides the flexibility to implement the lock-
step procedure of SP. The OMUSE framework provides a number
of services to expedite coupled Earth system models, e.g. grid-data
structures, unit conversions and model state handling, and we will
use this acronym to refer to this entire software layer from here
on. Using Python as the coupling code language has enabled us to
obtain a scientifically sound coupling and dedicated diagnostics in a
relative short development period. Nevertheless, some unexpected
bottlenecks have emerged too, which we elaborate on later.

Our SP implementation of OpenIFS respects the sequential time
step splitting algorithm that governs the physics package2 of the
ECMWF model [10]. To reconcile this numerical scheme with SP
and maintain a parallel execution of the LES instances, we had to
split the OpenIFS time step into a part before the cloud scheme and
after. After exposing the fractional OpenIFS time steps and DALES
time steps as Python functions in OMUSE, as well as the appropriate

1Provided the LES MPI layouts do not cross nodes.
2In this context we define ’physics’ as all processes that are parametrized purely in
the vertical direction or within a cell, such as convection, boundary layer turbulence,
cloud physics, the surface scheme, orographic drag etc.

Algorithm 1: Superparametrization time step
1 while t < tf inal do
2 evolve global model with dynamics and pre-cloud

physics: Q → Q + D(t)∆t ;
3 for i in 1, . . . ,n do in parallel
4 compute large scale forcings fq (t) using eq. 1;
5 time step local models until t + ∆t : q → q(t + ∆t);
6 compute local physics tendency PQ (t + ∆t) using eq.

2;
7 apply SP tendencies: Q → Q + PQ∆t ;
8 evolve global model with post-cloud physics:

Q → Q(t + ∆t);
9 t → t + ∆t ;

getters and setters of prognostic fields and tendencies, we were
able to implement the algorithm 1 as a Python script that drives the
GCM model and LES instances over MPI. The parallel loop on the
third line of the algorithm was achieved by using the asynchronous
execution capabilities for remote functions in OMUSE.

Benchmark Cases
We have run the coupled model in multiple configurations and pre-
sented a scientific validation of the outcome against observations in
[3]. For the work below, four benchmark cases were used, listed in
table 1. Two of themwere run around the village of Cabauw (Nether-
lands) and two of them above the sub-tropical island of Barbados,
where trade winds and shallow convection yield large-scale cloud
systems that are notably hard to simulate correctly3. The Cabauw
case represents a typical spring day with land-surface fluxes driving
the development of the atmospheric boundary layer, but note that
these cases contain LES instances over both land and sea, whereas
the Barbados setup contains practically only DALES instances over
the ocean. The horizontal grid cell size for DALES is in all cases 200
m, which is about the minimal resolution within the ’inertial range’
and the vertical discretization contains 160 equidistant levels up to
4 km height.

In all of these cases, the OpenIFS grid has 511 spectral modes and
91 vertical layers and a reduced gaussian grid with 348528 points
and a corresponding horizontal grid spacing of about 40 km. The
SP time step has been chosen to be 15 minutes, corresponding to
the maximal recommended timestep of OpenIFS at this resolution.

SP load imbalance
The concurrent execution of LES instances appears to be quite
unbalanced in our benchmark cases. Figure 1a depicts the waterfall
plot of a few time steps of the Cabauw-200 run that displays a
particularly unbalanced situation. The large spread in the LES run
time distribution, which has been drawn in fig. 1b, can primarily
be attributed to the adaptive time step size: DALES has an explicit
time integration scheme which limits the time step by the CFL
condition. This results in instances with strong up- and downdrafts

3These locations also host to measurement campaigns, which is useful for assessing
the simulation outcome, but of no specific relevance here.
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case Nxy les steps np
Cabauw-64 642 72 69 4
Cabauw-200 2002 42 193 8
Barbados-64 642 208 26 4
Barbados-200 2002 180 26 8

Table 1: Listing of the benchmark cases.Nxy denotes the hor-
izontal number of cells, ’les’ denotes the number of DALES
instances, ’steps’ the number of SP time steps, ’np’ the num-
ber of MPI tasks per DALES model.

and horizontal fluctuations being heavily limited in their time step.
Secondly, the thermodynamics and microphysics have a significant
impact on the DALES performance, and hence cloudy or rainy LES
simulations generally take more time to complete a single time step.
A global SP will require 0.34 million DALES copies and hence ten
thousands of cluster nodes, unless multiple instances share a single
CPU core, with a degraded DALES performance as a consequence.
One can think of several strategies to reduce the number of LES
instances, being either confinement to a limited SP region, as we
use for these benchmark cases, or coarsening the global model
grid, which in its turn degrades the accuracy of the large-scale
circulation4. In the remaining part of this analysis we will assume
that the number of available cores is sufficient to run the required
number of instances, and focus on improving the performance of
the coupled system.

The performance optimization of the SP setup has been subject of
previous research and the following strategies have been identified:

• Increase DALES performance. This is obviously the method
of choice, but has limited prospects since DALES is already
well-optimized.We have increased single-thread performance
by eliminating divisions and optimizing loop orderings.

• Decrease the LES grid extent and reduce the number of cells.
There is no reason to let the local models fill up the global
model grid cells horizontally, but this strategy is limited by
the scale of the emerging cloud patterns that need to be
represented by the local models.

• Use mean-state acceleration [11], which allows for shorter
run time than the full GCM time step. This method assumes
there is a time scale separation between the large eddies
and the mean state, allowing the resulting SP tendency to
be linearly extrapolated from the mean state after only a
fraction of the time steps. The technique slightly deteriorates
the accuracy of the SP in favour of shorter runtimes for the
DALES models [3].

• Use load-balancing to fill up the white space in fig. 1a. Since it
cannot be known initially which LES models will be slow or
fast5, a dynamical load-balancing strategy is needed, where
every SP time step we monitor the wall-clock times of the
instances and rebalance the amount of CPU cores (and MPI
tasks) they will be given. This assumes that the wall-clock

4And moreover, if one insists that all the LES instances cover global model grid cells
and retain a resolution of about 200 m, this strategy will effectively increase the number
of grid points per LES, making them run slower again.
5And this behavior may change during the simulation, e.g. as convection is developing
the instance time stepping may decelerate.
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(a) Waterfall plot of four SP time steps. The blue bars denote the actual wall-
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Figure 1: DALES ensemble timing data.
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time Tn of a LES instance is good predictor for Tn+1. Fortu-
nately this is usually the case, as can be observed from fig.
2a and 2b.

An important technical aspect of the SP algorithm is the require-
ment that the LES instances start from their previous state: whereas
the forcings are discontinuous between SP time steps due to the
GCM update, the developed turbulent eddies encoded in the small-
scale LES state must be inherited. In the current framework, the
DALES instances keep their state in memory while the GCM pro-
gresses; assigning more resources to a slow DALES instance how-
ever requires a restart of the program from a serialized state. Al-
though this is a feature that the OMUSE framework does support,
DALES currently must always restart with the same number of MPI
processes as when the snapshot was made. Nevertheless we believe
overcoming this technical difficulty is very much feasible, though
not the purpose of this paper: we will suffice with a performance
model of DALES to study the overall benefits of a quasi-dynamical6
load-balancing strategy.

Coupler performance
Our efforts to optimize the SP coupled system have not been lim-
ited to the DALES code; we have obtained better performance and
scalability of the coupling code as well. This was necessary as the
coupling code and communication between Python script and LES
instances had become a major bottleneck after applying the above
optimizations. In our original implementation of the SP algorithm,
the computation and dispatching of the large-scale forcings and
retrieval of SP tendencies (line 4 and 6 in algorithm 1) had been part
of the serial Python code. As a result, many MPI messages were
being sent in a blocking way before and after the SP time stepping,
resulting in sub-optimal performance and poor scaling behavior of
the data exchanges.

In the new version of our SP implementation we have used the
asynchronous feature of OMUSE to parallelize the communication
of these forcings and tendencies. The former are being sent to all
LES instances in parallel whereas the latter are being retrieved
whenever the LES has finished time stepping, an attempt to hide
MPI latencies and prevent network congestion. As a result, the
coupling time has been reduced as can be seen from fig. 3. However,
increasing the number of LES models to 1000 reveals that there
is still a bottleneck in the implementation: setting the forcings
may result in many MPI send calls being issued from the node
executing the master script and we suspect that a collective MPI
routine7 would be a far better option here. We will ignore this
scaling problem in our considerations on load-balancing below
and assume that the communications with the LES instances is a
constant overhead on the time-to-solution.

DALES strong scaling
The DALES code is parallellized with MPI, with partitioning in
the horizontal directions of the grid8. The DALES time step con-
tains only a few inter-process communication points, which are

6We rebalance the work at SP time steps.
7Which is to our knowledge not (yet) part of the OMUSE framework.
8This is a common partitioning in atmospheric models because the vertical dimension
is treated vastly differently throughout the code.
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Figure 2: DALES SP time step autocorrelation.
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(a) Original sequential SP coupling implementation timings.

(b) Parallelized coupling optimization result.

Figure 3: Scaling of various algorithm components with the
number of superparametrized gridpoints, using the average
over 5 time steps and LES over (a growing region over) Bar-
bados, with a horizontal resolution of 64 × 64 grid cells.

the halo exchanges of its prognostic fields during horizontal advec-
tion/diffusion and collective communication for the fast Fourier
transform in the pressure equation solver. For our purpose, we are
only interested in DALES configurations with up to 200 × 200 cells
horizontally, and it is sufficient to consider the strong scaling of the
program within a single node of a compute cluster. The inter-node
communication overhead makes larger partitions at these resolu-
tions inefficient. In fig. 4 we fitted the DALES runtime on a single
node of the ECMWF Cray XC409 with a simple Amdahl scaling
9This machine has two 18-core Intel Xeon EP E5-2695 V4 Broadwell processors per
compute node.
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Figure 4: Strong scaling behavior of DALES for two resolu-
tions (642 and 2002 grid points horizontally) on a single node.
Samples were obtained with a 5-run average using integer
divisors of the grid resolution in each dimension.

[12],
T (N ) ∝ (1 − p) + p/N (3)

where we fitted p = 0.89 to be the parallel fraction of the code and
the proportionality factor is the single-thread wall-clock time T (1)
which depends upon the DALES grid resolution. We assume this
constant is universal across our simulations. Its potential limiting
factors are halo exchanges, collectives during the solution of the
pressure equation and local load imbalances in thermodynamics
and microphysics. The former two are dependent upon DALES
configuration (which is identical for all our instances), the latter is
negligible due to periodic boundary conditions.

Exploring Dynamic Load Balancing
The aim of this section is to explore possible benefits of dynamic
load balancing for the SP system by optimizing the number of CPU
cores used by each of the DALES instances. We will assume that
all other technical bottlenecks have been cleared and the SP time
stepping of the slowest LES instance dominates the time-to-solution.
Furthermore, we will make the following assumptions:

(1) It is always possible to find a configuration of DALES MPI
tasks such that no instance has to run across multiple nodes.
We constrain the simulated load-balancing to disallow more
than 36 cores for a single DALES instance –the number of
cores per node at the machine where we have collected our
timing data– but ignore the problem of placing the processes
efficiently.

(2) Load-balancing and process placement algorithms take a
negligible amount of time compared to the SP time stepping.
In reality, a restart of the entire system does introduce some
overhead.

(3) Assigning more MPI tasks for certain DALES instances does
not significantly impact the communication time with the
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master Python script. This is a safe assumption considering
every DALES will be localized within a single node.

(4) The performance of a DALES instance is independent of the
DALES models it is sharing a compute node with, even if the
number of processed grid cells becomes inhomogeneously
distributed amongst MPI tasks. This assumption ignores the
fact that a memory-bound code like DALES is heavily de-
pendent upon L3 cache usage and thus will feel the presence
of other instances on the CPU, but it does not make a lot
of sense to model this penalty whilst the process placement
problem has not been solved.

To explore the impact of load-balancing we apply the scaling rule
eq. 3 to the four benchmark cases presented above to optimize
the SP wall-clock time, which we assume to be the slowest LES.
The algorithm consists of an iterative hypothetical reallocation
of resources, reassigning a core from the currently fastest LES to
the slowest one until the predicted run time decreases no more.
This yields a configuration that can be applied to the measured
wall-clock time of the next time step. We denote the result with the
persistence assumption, as it is based upon the hypothesis that the
performance will be a good predictor for the next time step. The
perfect load-balancing is the theoretical maximum, constructed by
using the actual measured timings of the next time step as input.
The results are listed in tab. 2 and reveal a picture where load-

case spers [%] sper f [%]
Cabauw-64 17.94 25.51
Cabauw-200 11.01 15.49
Barbados-64 1.30 4.94
Barbados-200 2.60 6.44

Table 2: Hypothetical load balancing of 4 SP simulations:
spers denotes the speedup achieved by assuming persistent
wall-clock time of LES instances, sper f denotes the maximal
achievable speedup with perfect prediction.

balancing can play a significant role depending on the case at hand.
For the Cabauw cases, the tail of the distribution is long and the
bulk of the models have short run times (see fig. 1a). A speedup of
about 18% seems feasible, and this is rather close to the perfect load-
balancing because the LES run-times are well predictable, which
can be seen from the time series in fig. 5 as well. In the Barbados
cases however, the instances are much more lumped together and
load-balancing speedup is at best limited to a disappointing 7%. We
believe this is due to the fact that the models are all located above
sea, with similar surface fluxes, and driven by a rather uniform trade
wind. This will result in a homogeneous CFL condition across the
DALES models and less potential for load-balancing to accelerate
extremely slow instances.

To draw conclusions beyond the test cases at hand, we can treat
the LES run times as an ensemble of independent Markov chains
that evolve according to the Cauchy distribution ρ, centered at zero,
with scale parameter τ fitted in fig. 2b,

Tn+1 = Tn + ∆ , ρ(∆) =
1
πτ

[
τ 2

τ 2 + ∆2

]
(4)
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Figure 5: Time series of the expected speedup for the
Cabauw-64 case, listing both the maximal achievable
speedup (perfect prediction) and the gain for the persistence
assumption.

The assumption that the LES wall-clock time depends only on its
previous state is not exactly valid because the LES models are forced
by a transient large-scale circulation that eventually influences their
step size and thermodynamic complexity. Furthermore we note that
the scale τ of the distribution in eq. 4 is not universal and depends
on the test case at hand: the Barbados cases display a slightly wider
distribution than the Cabauw runs, especially comparing against
the variance of the distribution of LES run-times themselves. Fi-
nally, the distribution is in reality skewed in extreme cases, very
slow LES instances tend to accelerate and very fast ones to slow
down due to limited wind forcings and surface fluxes. Nevertheless,
we believe that the independent ensemble is a sufficient approx-
imation to assess the impact of load-balancing for large number
of LES instances. For this it is essential to mimic the long tail of
the distributions of SP wall-clock times well, such that the slowest
LES has a realistic run time. The PDF of DALES run times has been
fitted with a gamma distribution (see fig. 1b),

ρ(T ) =
xk−1e−x

θΓ(k)
, x =

T

θ
(5)

where θ is a typical time scale that determines the standard devia-
tion together with the dimensionless shape parameter k . With the

case τ [s] k θ [s]

Cabauw-64 16.91 2.12 309.90
Cabauw-200 10.99 2.29 256.83
Barbados-64 3.87 100.63 3.24
Barbados-200 35.26 116.78 19.42

Table 3: Fitted parameters fromeqs. 4 and 5 for two test cases
at two resolutions.

fitted parameters listed in tab. 3 we are able to sample an initial
set of run times for any number of DALES models and progress
this set using eq. 4. During this we reject sampled SP times beyond
10σ of the original fitted distribution to avoid artificially high run
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Figure 6: Synthetic Cabauw-64 based performance with in-
creasing number of LES instances.

times and resulting load-balancing speedup, and also reject jumps
in runtime larger than 10τ , which are considered unrealistic. As a
starting distribution, we choose the Cabauw-64 fitted PDF because
we expect this density to represent the global SP ensemble better
than the Barbados case; in a global cover with tens of thousands
of LES instances, the large variability among the DALES models
will result in a long tail of slow instances and a large reservoir of
fast models. The resulting timings are shown in fig. 6a. The origi-
nal timings increase as more LES models are considered because
extremely slow instances are more likely to occur. The effect of
load-balancing significantly reduces this growth and its relative
impact rises too, with an asymptotic speedup around 50%, which
is only about 10% lower than the maximal achievable acceleration,
shown in fig. 6b. We note, however, that the increasing run time
disqualifies the Cabauw-64 global extension as a viable forecasting
system as it takes more than an hour to progress the model over a
GCM time step of 15 minutes. Nevertheless, we expect the reported
speedup to persist under optimizations of the LES code – at least

as long as the time step size in the explicit integration is limited by
the CFL number and the strong scaling is not degraded.

Finally we point out that the above results depend upon the paral-
lel efficiency p of the DALES code of eq. 3; increasing the parameter
to e.g. 0.99 raises the speedup listed in tab. 2 to resp. 20% and 18%
for the Cabauw-64 and Cabauw-200 cases; for the Barbados cases
however, the parameter p does not impact the speedup significantly.
Hence we expect that also after quasi-dynamical load-balancing
has been implemented, it remains beneficial to invest in the scaling
optimization of DALES, at least for cases with sufficient spread in
the run-times.

Conclusion and Outlook
We have given a detailed description of the various factors that
determine the performance of a SP of OpenIFS by a large number of
independent LES instances. The scaling of the application has been
improved by optimizing single-threaded performance of DALES
and increasing parallelism in the coupling routines. We pointed out
the load imbalance which occurred especially in our ’Cabauw’ runs
over the Netherlands, and which we believe to exist in a global SP
too. A thought experiment based upon the strong scaling of DALES
and the observed distribution and autocorrelation has revealed a
significant impact of dynamically balancing the load of each proces-
sor. In practice this can be achieved by restarting the system with a
balanced number of MPI tasks for the LES instances. However, a
more important task in our current implementation is the scaling of
the routine that sends the forcings to all DALES instances. Because
this happens at a synchronization point in our code, MPI latencies
cannot be hidden and this task quickly becomes a bottleneck for
large number of LES instances. We believe a collective MPI call
could resolve this issue quite easily, which will be part of a future
effort. Another option could be to redesign the system to not have
a master script at all, and apply the forcings from the OpenIFS MPI
tasks in a non-blocking fashion. In such an implementation all unit
conversions would have to be carried out in the Fortran library
interfaces of the two components.

Even with all of the above optimizations in place, a global SP
of the 40 km resolution OpenIFS will need a tremendous amount
of resources to achieve a time-to-solution that is shorter than the
simulated time range. The performance advantage of SP (over say a
global LES) is the fact that neighboring instances do not communi-
cate with each other every time step. The other burden however, the
limited LES time step, cannot entirely be mitigated by SP because
the global model acts as a synchronization point for all small-scale
models and hence the system is bound by the LES with the largest
average time-to-solution over the SP time step. In this sense, SP by
variable time-stepping LES models remotely resembles local time
stepping in the GCM [13] and the predictive load-balancing acts as
a work scheduler.

We note that quasi-dynamical load-balancing could be used to
optimize a setup with more LES instances than available CPU cores
as well. This however requires a task queue approach to the parallel
loop in the algorithm 1 and job scheduling provided within the
Python coupling code, because a naive overloading of the available
resources in OMUSE will lead to multiple MPI tasks sharing a single
core, degrading the DALES performance significantly. A possible
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strategy could consist of a generic non-preemptive multiprocess
scheduler dynamically distributing the LES instances, where the re-
quested number of cores and estimated execution time –determined
by the load-balancer– are input parameters to the scheduler. Such
a worker queue method requires a restart for every LES at the be-
ginning of their SP time loop, possibly incurring I/O and process
creation penalties. If this overhead can be kept sufficiently small,
we are convinced this approach may well lead to superior scaling
(to the above estimation) for all core counts. Another approach is to
consider the multiprocess scheduling as part of the cost function of
the static optimization problem of the load balancing, and minimize
the predicted makespan of every SP time step under the constraint
that the processes of a single LES model have to be confined to a
single compute node. Plenty of policies have been proposed that
handle the NP-hard problem of finding the most efficient schedule
[14]; the oversubscribed, load-balanced SP presents an interesting
application of these algorithms and may be the subject of future
research.

Finally, we point out that a multiscale model with many small-
scale models will generally have synchronization points between
them. Whenever these sub-models display sufficient variability in
their time-to-solution, a relatively good strong scaling and sufficient
autocorrelated run-times, the SP pattern applies and quasi-dynamic
load-balancing on a predictive basis can improve the performance
of the entire system. In such cases the Monte Carlo generation
of synthetic wall-clock times described above may provide an in-
dication of the expected speedup, and give an estimation of the
hardware resources required for running experiments.
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