755 research outputs found
A smartphone-based Teleradiology system
The development of a teleradiology application for remote monitoring and processing of patient image data using 2nd generation mobile devices with enhanced network services, is of extreme interest, especially when the final means of display is a smartphone, a very light and compact handheld device. In the following paper the development of applications, that are responsible for remote monitoring and processing of medical images, is investigated
A VME-based readout system for the CMS Preshower sub-detector
The CMS preshower is a fine grain detector that comprises 4288 silicon sensors, each containing 32 strips. The raw data are transferred from the detector to the counting room via 1208 optical fibres. Each fibre carries a 600-byte data packet per event. The maximum average level-1 trigger rate of 100 kHz results in a total data flow of ~72 GB/s from the preshower. For the readout of the preshower, 56 links to the CMS DAQ have been reserved, each having a bandwidth of 200 MB/s (2 kB/event). The total available downstream bandwidth of GB/s necessitates a reduction in the data volume by a factor of at least 7. A modular VME-based system is currently under development. The main objective of each VME board in this system is to acquire on-detector data from at least 22 optical links, perform on-line data reduction and pass the concentrated data to the CMS DAQ. The principle modules that the system is based on are being developed in collaboration with the TOTEM experiment
Generalized h-index for Disclosing Latent Facts in Citation Networks
What is the value of a scientist and its impact upon the scientific thinking?
How can we measure the prestige of a journal or of a conference? The evaluation
of the scientific work of a scientist and the estimation of the quality of a
journal or conference has long attracted significant interest, due to the
benefits from obtaining an unbiased and fair criterion. Although it appears to
be simple, defining a quality metric is not an easy task. To overcome the
disadvantages of the present metrics used for ranking scientists and journals,
J.E. Hirsch proposed a pioneering metric, the now famous h-index. In this
article, we demonstrate several inefficiencies of this index and develop a pair
of generalizations and effective variants of it to deal with scientist ranking
and with publication forum ranking. The new citation indices are able to
disclose trendsetters in scientific research, as well as researchers that
constantly shape their field with their influential work, no matter how old
they are. We exhibit the effectiveness and the benefits of the new indices to
unfold the full potential of the h-index, with extensive experimental results
obtained from DBLP, a widely known on-line digital library.Comment: 19 pages, 17 tables, 27 figure
Tensor Regression with Applications in Neuroimaging Data Analysis
Classical regression methods treat covariates as a vector and estimate a
corresponding vector of regression coefficients. Modern applications in medical
imaging generate covariates of more complex form such as multidimensional
arrays (tensors). Traditional statistical and computational methods are proving
insufficient for analysis of these high-throughput data due to their ultrahigh
dimensionality as well as complex structure. In this article, we propose a new
family of tensor regression models that efficiently exploit the special
structure of tensor covariates. Under this framework, ultrahigh dimensionality
is reduced to a manageable level, resulting in efficient estimation and
prediction. A fast and highly scalable estimation algorithm is proposed for
maximum likelihood estimation and its associated asymptotic properties are
studied. Effectiveness of the new methods is demonstrated on both synthetic and
real MRI imaging data.Comment: 27 pages, 4 figure
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance and Operation of the CMS Electromagnetic Calorimeter
The operation and general performance of the CMS electromagnetic calorimeter
using cosmic-ray muons are described. These muons were recorded after the
closure of the CMS detector in late 2008. The calorimeter is made of lead
tungstate crystals and the overall status of the 75848 channels corresponding
to the barrel and endcap detectors is reported. The stability of crucial
operational parameters, such as high voltage, temperature and electronic noise,
is summarised and the performance of the light monitoring system is presented
Enhanced optical conductivity and many-body effects in strongly-driven photo-excited semi-metallic graphite
The excitation of quasi-particles near the extrema of the electronic band
structure is a gateway to electronic phase transitions in condensed matter. In
a many-body system, quasi-particle dynamics are strongly influenced by the
electronic single-particle structure and have been extensively studied in the
weak optical excitation regime. Yet, under strong optical excitation, where
light fields coherently drive carriers, the dynamics of many-body interactions
that can lead to new quantum phases remain largely unresolved. Here, we induce
such a highly non-equilibrium many-body state through strong optical excitation
of charge carriers near the van Hove singularity in graphite. We investigate
the system's evolution into a strongly-driven photo-excited state with
attosecond soft X-ray core-level spectroscopy. Surprisingly, we find an
enhancement of the optical conductivity of nearly ten times the quantum
conductivity and pinpoint it to carrier excitations in flat bands. This
interaction regime is robust against carrier-carrier interaction with coherent
optical phonons acting as an attractive force reminiscent of superconductivity.
The strongly-driven non-equilibrium state is markedly different from the
single-particle structure and macroscopic conductivity and is a consequence of
the non-adiabatic many-body state
- …
