26 research outputs found

    Cambios en el uso del suelo y sus efectos a diferentes escalas espaciales y temporales sobre la diversidad de aves en el Bajo Delta del río Paraná

    Get PDF
    Tesis para obtener el grado de Doctora en el área de Ciencias Biológicas, de la Universidad de Buenos Aires, en 2016Las actividades humanas han modificado una gran proporción de la superficie terrestre. Sus impactos son extensos en particular sobre la biodiversidad y los bienes y servicios que proveen los ecosistemas. Los humedales son uno de los ecosistemas más afectados por el cambio en el uso del suelo poniendo en riesgo su elevada biodiversidad y los numerosos bienes y servicios ecosistémicos que brindan. En Argentina, el Bajo Delta del Río Paraná es un extenso mosaico de humedales que sostiene una alta biodiversidad. Sin embargo, es una región de alta vulnerabilidad frente a procesos naturales y actividades humanas. En los últimos años el incremento en la actividad ganadera y forestal en la zona ha propiciado una intensificación de las prácticas de manejo de agua (terraplenes, diques y zanjas) que provocan el desecamiento de la vegetación palustre generando un proceso de pampeanización del humedal. Los cambios en el uso y las coberturas del suelo pueden generar cambios e impactos negativos en la biodiversidad. El objetivo de este trabajo fue evaluar el cambio en la diversidad de aves asociado al cambio en el uso del suelo. En primer lugar, se caracterizó el cambio en el uso y las coberturas del Bajo Delta en los últimos 14 años. Mediante imágenes satelitales Landsat 5 TM y 8 OLI se desarrollaron mapas de cobertura y uso del suelo para 1994/99 y 2013, y con árboles de regresión potenciados (BRT) se cuantificó la influencia de variables socioeconómicas, biofísicas y de manejo en la pérdida de humedales (cobertura de vegetación palustre). En segundo lugar, se identificaron los efectos del cambio en el paisaje sobre las aves utilizando dos aproximaciones: un análisis espacial de la riqueza de especies asociada a la estructura del paisaje actual resultante del proceso de pampeanización, y un análisis temporal de los cambios en la riqueza de especies asociados a los cambios en el paisaje en los últimos 14 años. Por un lado, se estudió la relación entre las aves y la composición y configuración del paisaje. Se muestrearon aves por censo de puntos cubriendo todas las coberturas y usos del suelo del Bajo Delta no insular y se cuantificó la influencia de la estructura del paisaje y usos en la riqueza y densidad de aves. Por otro lado, se evaluó la relación entre el cambio temporal en la comunidad de aves (1997-99 vs. 2011-12-13) y el cambio temporal en la composición del paisaje (1999 y 2013). A partir de un muestreo de aves por censo de puntos realizado en 1997 y 1999 en el Bajo Delta no insular, se remuestrearon los mismos puntos en 2011, 2012 y 2013 y se analizó el cambio temporal en la riqueza y composición de aves asociado al cambio en el uso y la cobertura del suelo. En sólo 14 años, un tercio de la cobertura de vegetación palustre del Bajo Delta se perdieron (163.000ha), el 70% de los mismos fueron convertidos en tierras ganaderas y el 20% en plantaciones forestales. Las variables que representan el uso del suelo resultaron los factores determinantes de la pérdida de vegetación palustre, en particular la densidad ganadera y el área endicada. Aunque la densidad de ganado no tiene un efecto negativo sobre la riqueza de aves, la homogeneización del paisaje (producto de la pampeanización del Bajo Delta no insular) caracterizada por una reducción de la cobertura de vegetación palustre y una expansión de la cobertura de pastizales, tuvo un efecto negativo sobre la riqueza total de aves y por gremio de hábitat. La comunidad de aves cambió de 1997/99 a 2011/13. La especies de humedal fueron las más afectadas especialmente si se comparan años húmedos, indicando un efecto importante tanto de la dinámica hidrológica natural como de los cambios en las coberturas del Bajo Delta no insular. A largo plazo, la comunidad de aves estaría controlada por la estructura del paisaje, aunque respondería débilmente a los cambios en la estructura del paisaje en sólo 14 años. En resumen, el proceso de pampeanización del Bajo Delta se ha extendido, convirtiendo grandes extensiones de vegetación palustre en pastizales secos aptos para la actividad ganadera. Las aves del Bajo Delta no insular responden a esta pampeanización con cambios en la composición de especies. Por ello, es urgente y necesaria la gestión sostenible de los humedales del Delta del río Paraná. Los resultados de este trabajo pueden ser insumos para el desarrollo de normativas nuevas y otras existentes que, de manera efectiva, desaceleren la pérdida de humedales en esta región tan importante no sólo por la alta biodiversidad que alberga sino por los bienes y servicios que brinda a la comunidad local y a los pobladores de la principal área urbana de Argentina.Wetlands are among the most productive and diverse ecosystems on Earth. Land use changes that modify its original landscape are one of the main threats to global biodiversity. In Argentina, the Lower Delta of Paraná River is characterized by its high biodiversity due to its particular environmental heterogeneity. However, it is being extremely modified. Forestation and intensification of livestock have caused profound landscape alterations by converting the original land covers (freshwater marshes and rushes) into pastures. This conversion can affect biodiversity in the region, especially birds that rely on wetland habitat. This project aims to understand fist, the effects of land use changes on land covers and second, avian response to land use change to contribute to landscape management and avian conservation in the Lower Delta of Paraná River. First, we detected land use change in the Lower Delta of Paraná River with Landsat images from 1999 and 2013. Then, we analyzed the relationship between birds and landscape composition and configuration. Finally, we related land use changes with changes detected in the avian community from 1997-99 to 2011-12-13. We found that one third of the freshwater marshes of the Lower Delta were lost in only 14 years (163,000 ha). The majority (70%) of the losses were due to conversion to pastures and 20% due to conversion to forestry plantations. Cattle density, dammed area and accessibility were the most important factors determining freshwater marshes conversion. Avian richness responded negatively to landscape homogenization on the long term, characterized by a decrease in freshwater marshes and an increase in grasslands. The community differed from 1997-99 to 2011-12-13, wetlands species richness decreased, especially when comparing years of wet hydrological condition. However, the relationship between avian richness change and landscape change in the last 14 years was weak. In summary, freshwater marshes loss is widespread in the Lower Delta, it has eroded the avian community, and further habitat loss seems imminent. Conservation efforts should be focused in this vulnerable ecosystem before full-scale land conversion occurs. Our results show that cattle management intensification has profoundly changed the landscape structure of the Lower Delta of Paraná River with substantial wetlands loss, likely having deep negative impacts in birds and potentially other biodiversity groups and ecosystem services. As a consequence, these results can be used as inputs for the development of land use planning and natural resource management to ensure conservation of biodiversity and ecosystem services to benefit local communities.Instituto de Recursos BiológicosFil: Sica, Yanina Vanesa. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina

    Bird diversity and conservation in the lower delta of the Paraná River, Argentina

    Get PDF
    The Delta of the Paraná River, one of the most important wetlands in South America, harbors subtropicaland temperate bird species. Although this region is key for biodiversity conservation, aspects such as speciescomposition and conservation status, and their relationship with vegetation types are poorly known. Herewe described bird richness and composition of this area, with emphasis on the relationship between vegetationtype and the presence of key bird species. We compiled systematic studies conducted during the 2007-2020 periodand performed new surveys to elaborate a checklist of bird species and assess completeness. We reviewed a total of 12 studies distributed along five landscape units and nine vegetation types. We recorded 245 species, though the species accumulation curve indicates that the number of species could be even higher for the area. Most species were recorded in freshwater marshes, watercourses and grasslands in Entre Ríos. We identified 14 (5.7%) threatened species (e.g., Spartonoica maluroides, Limnoctites rectirostris and Sporophila palustris), most of them registered in grassland and freshwater marshes. To our best knowledge, the list of species is the most comprehensive one for the area, showing that 23.7% lf all bird species known for Argentina. Our results suggest the importance of freshwater marshes, watercourses and grasslands as key vegetation types for birds.Fil: Fracassi, Natalia Gabriela. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Delta del Paraná; ArgentinaFil: Sica, Yanina Vanesa. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; ArgentinaFil: Magnano, Andrea Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Vaccaro, Anahí Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Landó, Roberto. Arauco Argentina Sociedad Anonima (arauco Argentina Sa);Fil: Artero, Diego. Arauco Argentina Sociedad Anonima (arauco Argentina Sa);Fil: Gavier Pizarro, Gregorio. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bó, Roberto Fabián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Somma, Daniel Jorge. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Delta del Paraná; ArgentinaFil: Quintana, Ruben Dario. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; ArgentinaFil: Rodriguez, María José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Cabanne, Gustavo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentin

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    Aim Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location Global. Taxon All extant mammal species. Methods Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.Output Status: Forthcoming/Available Online Output Type: Data Article Additional co-authors: Kira McCall, Ajay Ranipeta, Anna Schuerkmann, Michael A. Torselli, Thomas Lacher Jr, Russell A. Mittermeier, Anthony B. Rylands, Wes Sechrest, Don E. Wilson, Agustín M. Abba, Luis F. Aguirre, Joaquín Arroyo-Cabrales, Diego Astúa, Andrew M. Baker, Gill Braulik, Janet K. Braun, Jorge Brito, Peter E. Busher, Santiago F. Burneo, M. Alejandra Camacho, Paolo Cavallini, Elisandra de Almeida Chiquito, Joseph A. Cook, Tamás Cserkész, Gábor Csorba, Erika Cuéllar Soto, Valeria da Cunha Tavares, Tim R. B. Davenport, Thomas Deméré, Christiane Denys, Christopher R. Dickman, Mark D. B. Eldridge, Eduardo Fernandez-Duque, Charles M. Francis, Greta Frankham, William L. Franklin, Thales Freitas, J. Anthony Friend, Elizabeth L. Gadsby, Guilherme S. T. Garbino, Philippe Gaubert, Norberto Giannini, Thomas Giarla, Jason S. Gilchrist, Jaime Gongora, Steven M. Goodman, Sharon Gursky-Doyen, Klaus Hackländer, Mark S. Hafner, Melissa Hawkins, Kristofer M. Helgen, Steven Heritage, Arlo Hinckley, Stefan Hintsche, Mary Holden, Kay E. Holekamp, Rodney L. Honeycutt, Brent A. Huffman, Tatyana Humle, Rainer Hutterer, Carlos Ibáñez Ulargui, Stephen M. Jackson, Jan Janecka, Mary Janecka, Paula Jenkins, Rimvydas Juškaitis, Javier Juste, Roland Kays, C. William Kilpatrick, Tigga Kingston, John L. Koprowski, Boris Kryštufek, Tyrone Lavery, Thomas E. Lee Jr, Yuri L. R. Leite, Roberto Leonan M. Novaes, Burton K. Lim, Andrey Lissovsky, Raquel López-Antoñanzas, Adrià López-Baucells, Colin D. MacLeod, Michael A. Mares, Helene Marsh, Stefano Mattioli, Erik Meijaard, Ara Monadjem, F. Blake Morton, Grace Musser, Tilo Nadler, Ryan W. Norris, Agustina Ojeda, Nicté Ordóñez-Garza, Ulyses F. J. Pardiñas, Bruce D. Patterson, Ana Pavan, Michael Pennay, Calebe Pereira, Joyce Prado, Helder L. Queiroz, Matthew Richardson, Erin P. Riley, Stephen J. Rossiter, Daniel I. Rubenstein, Dennisse Ruelas, Jorge Salazar-Bravo, Stéphanie Schai-Braun, Cody J. Schank, Christoph Schwitzer, Lori K. Sheeran, Myron Shekelle, Georgy Shenbrot, Pipat Soisook, Sergio Solari, Richard Southgate, Mariella Superina, Andrew B. Taber, Maurício Talebi, Peter Taylor, Thong Vu Dinh, Nelson Ting, Diego G. Tirira, Susan Tsang, Samuel T. Turvey, Raul Valdez, Victor Van Cakenberghe, Geraldine Veron, Janette Wallis, Rod Wells, Danielle Whittaker, George Wittemyer, John Woinarski, Dietmar Zinner, Nathan S. Upham, Walter Jet

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.Fil: Marsh, Charles J.. Yale University; Estados UnidosFil: Sica, Yanina. Yale University; Estados UnidosFil: Burguin, Connor. University of New Mexico; Estados UnidosFil: Dorman, Wendy A.. University of Yale; Estados UnidosFil: Anderson, Robert C.. University of Yale; Estados UnidosFil: del Toro Mijares, Isabel. University of Yale; Estados UnidosFil: Vigneron, Jessica G.. University of Yale; Estados UnidosFil: Barve, Vijay. University Of Florida. Florida Museum Of History; Estados UnidosFil: Dombrowik, Victoria L.. University of Yale; Estados UnidosFil: Duong, Michelle. University of Yale; Estados UnidosFil: Guralnick, Robert. University Of Florida. Florida Museum Of History; Estados UnidosFil: Hart, Julie A.. University of Yale; Estados UnidosFil: Maypole, J. Krish. University of Yale; Estados UnidosFil: McCall, Kira. University of Yale; Estados UnidosFil: Ranipeta, Ajay. University of Yale; Estados UnidosFil: Schuerkmann, Anna. University of Yale; Estados UnidosFil: Torselli, Michael A.. University of Yale; Estados UnidosFil: Lacher, Thomas. Texas A&M University; Estados UnidosFil: Wilson, Don E.. National Museum of Natural History; Estados UnidosFil: Abba, Agustin Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Aguirre, Luis F.. Universidad Mayor de San Simón; BoliviaFil: Arroyo Cabrales, Joaquín. Instituto Nacional de Antropología E Historia, Mexico; MéxicoFil: Astúa, Diego. Universidade Federal de Pernambuco; BrasilFil: Baker, Andrew M.. Queensland University of Technology; Australia. Queensland Museum; AustraliaFil: Braulik, Gill. University of St. Andrews; Reino UnidoFil: Braun, Janet K.. Oklahoma State University; Estados UnidosFil: Brito, Jorge. Instituto Nacional de Biodiversidad; EcuadorFil: Busher, Peter E.. Boston University; Estados UnidosFil: Burneo, Santiago F.. Pontificia Universidad Católica del Ecuador; EcuadorFil: Camacho, M. Alejandra. Pontificia Universidad Católica del Ecuador; EcuadorFil: de Almeida Chiquito, Elisandra. Universidade Federal do Espírito Santo; BrasilFil: Cook, Joseph A.. University of New Mexico; Estados UnidosFil: Cuéllar Soto, Erika. Sultan Qaboos University; OmánFil: Davenport, Tim R. B.. Wildlife Conservation Society; TanzaniaFil: Denys, Christiane. Muséum National d'Histoire Naturelle; FranciaFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Eldridge, Mark D. B.. Australian Museum; AustraliaFil: Fernandez Duque, Eduardo. University of Yale; Estados UnidosFil: Francis, Charles M.. Environment And Climate Change Canada; CanadáFil: Frankham, Greta. Australian Museum; AustraliaFil: Freitas, Thales. Universidade Federal do Rio Grande do Sul; BrasilFil: Friend, J. Anthony. Conservation And Attractions; AustraliaFil: Giannini, Norberto Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Gursky-Doyen, Sharon. Texas A&M University; Estados UnidosFil: Hackländer, Klaus. Universitat Fur Bodenkultur Wien; AustriaFil: Hawkins, Melissa. National Museum of Natural History; Estados UnidosFil: Helgen, Kristofer M.. Australian Museum; AustraliaFil: Heritage, Steven. University of Duke; Estados UnidosFil: Hinckley, Arlo. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Holden, Mary. American Museum of Natural History; Estados UnidosFil: Holekamp, Kay E.. Michigan State University; Estados UnidosFil: Humle, Tatyana. University Of Kent; Reino UnidoFil: Ibáñez Ulargui, Carlos. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Jackson, Stephen M.. Australian Museum; AustraliaFil: Janecka, Mary. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Jenkins, Paula. Natural History Museum; Reino UnidoFil: Juste, Javier. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Leite, Yuri L. R.. Universidade Federal do Espírito Santo; BrasilFil: Novaes, Roberto Leonan M.. Universidade Federal do Rio de Janeiro; BrasilFil: Lim, Burton K.. Royal Ontario Museum; CanadáFil: Maisels, Fiona G.. Wildlife Conservation Society; Estados UnidosFil: Mares, Michael A.. Oklahoma State University; Estados UnidosFil: Marsh, Helene. James Cook University; AustraliaFil: Mattioli, Stefano. Università degli Studi di Siena; ItaliaFil: Morton, F. Blake. University of Hull; Reino UnidoFil: Ojeda, Agustina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Ordóñez Garza, Nicté. Instituto Nacional de Biodiversidad; EcuadorFil: Pardiñas, Ulises Francisco J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; ArgentinaFil: Pavan, Mariana. Universidade de Sao Paulo; BrasilFil: Riley, Erin P.. San Diego State University; Estados UnidosFil: Rubenstein, Daniel I.. University of Princeton; Estados UnidosFil: Ruelas, Dennisse. Museo de Historia Natural, Lima; PerúFil: Schai-Braun, Stéphanie. Universitat Fur Bodenkultur Wien; AustriaFil: Schank, Cody J.. University of Texas at Austin; Estados UnidosFil: Shenbrot, Georgy. Ben Gurion University of the Negev; IsraelFil: Solari, Sergio. Universidad de Antioquia; ColombiaFil: Superina, Mariella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Tsang, Susan. American Museum of Natural History; Estados UnidosFil: Van Cakenberghe, Victor. Universiteit Antwerp; BélgicaFil: Veron, Geraldine. Université Pierre et Marie Curie; FranciaFil: Wallis, Janette. Kasokwa-kityedo Forest Project; UgandaFil: Whittaker, Danielle. Michigan State University; Estados UnidosFil: Wells, Rod. Flinders University.; AustraliaFil: Wittemyer, George. State University of Colorado - Fort Collins; Estados UnidosFil: Woinarski, John. Charles Darwin University; AustraliaFil: Upham, Nathan S.. University of Yale; Estados UnidosFil: Jetz, Walter. University of Yale; Estados Unido

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Biological Earth observation with animal sensors

    Get PDF
    Space-based tracking technology using low-cost miniature tags is now delivering data on fine-scale animal movement at near-global scale. Linked with remotely sensed environmental data, this offers a biological lens on habitat integrity and connectivity for conservation and human health; a global network of animal sentinels of environmen-tal change

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Land use y land cover change effects at different spatial y temporal scales on birds in the Lower Delta of Paraná river

    No full text
    Las actividades humanas han modificado una gran proporción de la superficie terrestre. Sus impactos son extensos en particular sobre la biodiversidad y los bienes y servicios que proveen los ecosistemas. Los humedales son uno de los ecosistemas más afectados por el cambio en el uso del suelo poniendo en riesgo su elevada biodiversidad y los numerosos bienes y servicios ecosistémicos que brindan. En Argentina, el Bajo Delta del Río Paraná es un extenso mosaico de humedales que sostiene una alta biodiversidad. Sin embargo, es una región de alta vulnerabilidad frente a procesos naturales y actividades humanas. En los últimos años el incremento en la actividad ganadera y forestal en la zona ha propiciado una intensificación de las prácticas de manejo de agua (terraplenes, diques y zanjas) que provocan el desecamiento de la vegetación palustre generando un proceso de pampeanización del humedal. Los cambios en el uso y las coberturas del suelo pueden generar cambios e impactos negativos en la biodiversidad. El objetivo de este trabajo fue evaluar el cambio en la diversidad de aves asociado al cambio en el uso del suelo. En primer lugar, se caracterizó el cambio en el uso y las coberturas del Bajo Delta en los últimos 14 años. Mediante imágenes satelitales Landsat 5 TM y 8 OLI se desarrollaron mapas de cobertura y uso del suelo para 1994/99 y 2013, y con árboles de regresión potenciados (BRT) se cuantificó la influencia de variables socioeconómicas, biofísicas y de manejo en la pérdida de humedales (cobertura de vegetación palustre). En segundo lugar, se identificaron los efectos del cambio en el paisaje sobre las aves utilizando dos aproximaciones: un análisis espacial de la riqueza de especies asociada a la estructura del paisaje actual resultante del proceso de pampeanización, y un análisis temporal de los cambios en la riqueza de especies asociados a los cambios en el paisaje en los últimos 14 años. Por un lado, se estudió la relación entre las aves y la composición y configuración del paisaje. Se muestrearon aves por censo de puntos cubriendo todas las coberturas y usos del suelo del Bajo Delta no insular y se cuantificó la influencia de la estructura del paisaje y usos en la riqueza y densidad de aves. Por otro lado, se evaluó la relación entre el cambio temporal en la comunidad de aves (1997-99 vs. 2011-12-13) y el cambio temporal en la composición del paisaje (1999 y 2013). A partir de un muestreo de aves por censo de puntos realizado en 1997 y 1999 en el Bajo Delta no insular, se remuestrearon los mismos puntos en 2011, 2012 y 2013 y se analizó el cambio temporal en la riqueza y composición de aves asociado al cambio en el uso y la cobertura del suelo. En sólo 14 años, un tercio de la cobertura de vegetación palustre del Bajo Delta se perdieron (163.000ha), el 70% de los mismos fueron convertidos en tierras ganaderas y el 20% en plantaciones forestales. Las variables que representan el uso del suelo resultaron los factores determinantes de la pérdida de vegetación palustre, en particular la densidad ganadera y el área endicada. Aunque la densidad de ganado no tiene un efecto negativo sobre la riqueza de aves, la homogeneización del paisaje (producto de la pampeanización del Bajo Delta no insular) caracterizada por una reducción de la cobertura de vegetación palustre y una expansión de la cobertura de pastizales, tuvo un efecto negativo sobre la riqueza total de aves y por gremio de hábitat. La comunidad de aves cambió de 1997/99 a 2011/13. La especies de humedal fueron las más afectadas especialmente si se comparan años húmedos, indicando un efecto importante tanto de la dinámica hidrológica natural como de los cambios en las coberturas del Bajo Delta no insular. A largo plazo, la comunidad de aves estaría controlada por la estructura del paisaje, aunque respondería débilmente a los cambios en la estructura del paisaje en sólo 14 años. En resumen, el proceso de pampeanización del Bajo Delta se ha extendido, convirtiendo grandes extensiones de vegetación palustre en pastizales secos aptos para la actividad ganadera. Las aves del Bajo Delta no insular responden a esta pampeanización con cambios en la composición de especies. Por ello, es urgente y necesaria la gestión sostenible de los humedales del Delta del río Paraná. Los resultados de este trabajo pueden ser insumos para el desarrollo de normativas nuevas y otras existentes que, de manera efectiva, desaceleren la pérdida de humedales en esta región tan importante no sólo por la alta biodiversidad que alberga sino por los bienes y servicios que brinda a la comunidad local y a los pobladores de la principal área urbana de Argentina.Wetlands are among the most productive and diverse ecosystems on Earth. Land use changes that modify its original landscape are one of the main threats to global biodiversity. In Argentina, the Lower Delta of Paraná River is characterized by its high biodiversity due to its particular environmental heterogeneity. However, it is being extremely modified. Forestation and intensification of livestock have caused profound landscape alterations by converting the original land covers (freshwater marshes and rushes) into pastures. This conversion can affect biodiversity in the region, especially birds that rely on wetland habitat. This project aims to understand fist, the effects of land use changes on land covers and second, avian response to land use change to contribute to landscape management and avian conservation in the Lower Delta of Paraná River. First, we detected land use change in the Lower Delta of Paraná River with Landsat images from 1999 and 2013. Then, we analyzed the relationship between birds and landscape composition and configuration. Finally, we related land use changes with changes detected in the avian community from 1997-99 to 2011-12-13. We found that one third of the freshwater marshes of the Lower Delta were lost in only 14 years (163,000 ha). The majority (70%) of the losses were due to conversion to pastures and 20% due to conversion to forestry plantations. Cattle density, dammed area and accessibility were the most important factors determining freshwater marshes conversion. Avian richness responded negatively to landscape homogenization on the long term, characterized by a decrease in freshwater marshes and an increase in grasslands. The community differed from 1997-99 to 2011-12-13, wetlands species richness decreased, especially when comparing years of wet hydrological condition. However, the relationship between avian richness change and landscape change in the last 14 years was weak. In summary, freshwater marshes loss is widespread in the Lower Delta, it has eroded the avian community, and further habitat loss seems imminent. Conservation efforts should be focused in this vulnerable ecosystem before full-scale land conversion occurs. Our results show that cattle management intensification has profoundly changed the landscape structure of the Lower Delta of Paraná River with substantial wetlands loss, likely having deep negative impacts in birds and potentially other biodiversity groups and ecosystem services. As a consequence, these results can be used as inputs for the development of land use planning and natural resource management to ensure conservation of biodiversity and ecosystem services to benefit local communities.Fil:Sica, Yanina Vanesa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Unlocking Inventory Data Capture, Sharing and Reuse: The Humboldt Extension to Darwin Core

    No full text
    Biodiversity inventories, i.e., recording multiple species at a specific place and time, are routinely performed and offer high-quality data for characterizing biodiversity and its change. Digitization, sharing and reuse of incidental point records (i.e., records that are not readily associated with systematic sampling or monitoring, typically museum specimens and many observations from citizen science projects) has been the focus for many years in the biodiversity data community. Only more recently, attention has been directed towards mobilizing data from both new and longstanding inventories and monitoring efforts. These kinds of studies provide very rich data that can enable inferences about species absence, but their reliability depends on the methodology implemented, the survey effort and completeness. The information about these elements has often been regarded as metadata and captured in an unstructured manner, thus making their full use very challenging.Unlocking and integrating inventory data requires data standards that can facilitate capture and sharing of data with the appropriate depth. The Darwin Core standard (Wieczorek et al. 2012) currently enables reporting some of the information contained in inventories, particularly using Darwin Core Event terms such as samplingProtocol, sampleSizeValue, sampleSizeUnit, samplingEffort. However, it is limited in its ability to accommodate spatial, temporal, and taxonomic scopes, and other key aspects of the inventory sampling process, such as direct or inferred measures of sampling effort and completeness. The lack of a standardized way to share inventory data has hindered their mobilization, integration, and broad reuse. In an effort to overcome these limitations, a framework was developed to standardize inventory data reporting: Humboldt Core (Guralnick et al. 2018). Humboldt Core identified three types of inventories (single, elementary, and summary inventories) and proposed a series of terms to report their content. These terms were organized in six categories: dataset and identification; geospatial and habitat scope; temporal scope; taxonomic scope; methodology description; and completeness and effort. While originally planned as a new TDWG standard and being currently implemented in Map of Life (https://mol.org/humboldtcore/), ratification was not pursued at the time, thus limiting broader community adoption.In 2021 the TDWG Humboldt Core Task Group was established to review how to best integrate the terms proposed in the original publication with existing standards and implementation schemas. The first goal of the task group was to determine whether a new, separate standard was needed or if an extension to Darwin Core could accommodate the terms necessary to describe the relevant information elements. Since the different types of inventories can be thought of as Events with different nesting levels (events within events, e.g., plots within sites), and after an initial mapping to existing Darwin Core terms, it was deemed appropriate to start from a Darwin Core Event Core and build an extension to include Humboldt Core terms. The task group members are currently revising all original Humboldt Core terms, reformulating definitions, comments, and examples, and discarding or adding new terms where needed. We are also gathering real datasets to test the use of the extension once an initial list of revised terms is ready, before undergoing a public review period as established by the TDWG process.Through the ratification of Humboldt Core as a TDWG extension, we expect to provide the community with a solution to share and use inventory data, which improves biodiversity data discoverability, interoperability and reuse while lowering the reporting burden at different levels (data collection, integration and sharing)
    corecore