59 research outputs found

    Characterising resting-state functional connectivity in a large sample of adults with ADHD

    Get PDF
    AbstractAttention-deficit/hyperactivity disorder (ADHD) is a common childhood psychiatric disorder that often persists into adulthood. While several studies have identified altered functional connectivity in brain networks during rest in children with ADHD, few studies have been performed on adults with ADHD. Existing studies have generally investigated small samples. We therefore investigated aberrant functional connectivity in a large sample of adult patients with childhood-onset ADHD, using a data-driven, whole-brain approach. Adults with a clinical ADHD diagnosis (N=99) and healthy, adult comparison subjects (N=113) underwent a 9-minute resting-state fMRI session in a 1.5T MRI scanner. After elaborate preprocessing including a thorough head-motion correction procedure, group independent component analysis (ICA) was applied from which we identified six networks of interest: cerebellum, executive control, left and right frontoparietal and two default-mode networks. Participant-level network maps were obtained using dual-regression and tested for differences between patients with ADHD and controls using permutation testing. Patients showed significantly stronger connectivity in the anterior cingulate gyrus of the executive control network. Trends were also observed for stronger connectivity in the cerebellum network in ADHD patients compared to controls. However, there was considerable overlap in connectivity values between patients and controls, leading to relatively low effect sizes despite the large sample size. These effect sizes were slightly larger when testing for correlations between hyperactivity/impulsivity symptoms and connectivity strength in the executive control and cerebellum networks. This study provides important insights for studies on the neurobiology of adult ADHD; it shows that resting-state functional connectivity differences between adult patients and controls exist, but have smaller effect sizes than existing literature suggested

    Beyond the Global Brain Differences:Intraindividual Variability Differences in 1q21.1 Distal and 15q11.2 BP1-BP2 Deletion Carriers

    Get PDF
    BACKGROUND: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and globalbrain differences compared with noncarriers. However, interpreting regional differences is challenging if a globaldifference drives the regional brain differences. Intraindividual variability measures can be used to test for regionaldifferences beyond global differences in brain structure.METHODS: Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n =30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matchednoncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual’sregional difference and global difference, were used to test for regional differences that diverge from the globaldifference.RESULTS: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differedmore than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thicknessin regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal andsomatosensory cortex differed more than the global difference in cortical thickness.CONCLUSIONS: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distaland 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distaland 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanismsinvolved in altered neurodevelopment

    Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples

    Get PDF
    Objective: Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonreplications are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies. Methods: Cortical thickness and surface area (based on the Desikan–Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707). Results: In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen’s d=−0.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample. Conclusions: Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Alcohol stress on cyanobacterial membranes: New insights revealed by transcriptomics

    No full text
    Cyanobacteria are model photosynthetic prokaryotic organisms often used in biotechnology to produce biofuels including alcohols. The effect of alcohols on cyanobacterial cell physiology and specifically on membrane fluidity is poorly understood. Previous research on various primary aliphatic alcohols found that alcohols with a short hydrocarbon chain (C1-C3) do not affect expression of genes related to membrane physical state. In addition, less water-soluble alcohols with a hydrocarbon chain longer than C8 are found to have a reduced ability to reach cellular membranes hence do not drastically change membrane physical state or induce expression of stress-responsive genes. Therefore, hexan-1-ol (C6) is suggested to have the most profound effect on cyanobacterial membrane physical state. Here, we studied the effects of hexan-1-ol on the cyanobacterium Synechocystis sp. PCC 6803 transcriptome. The transcriptome data obtained is compared to the previously reported analysis of gene expression induced by benzyl alcohol and butan-1-ol. The set of genes whose expression is induced after exposure to all three studied alcohols is identified. The expression under alcohol stress for several general stress response operons is analyzed, and examples of antisense interactions of RNA are investigated
    corecore