912 research outputs found

    Isolation and Characterization of Antibacterial Compounds from <i>Aspergillus fumigatus:</i> An Endophytic Fungus from a Mangrove Plant of the Sundarbans.

    Get PDF
    The Sundarbans, a UNESCO world heritage site, is one of the largest mangrove forests in one stretch. Mangrove plants from this forest are little studied for their endophytic fungi. In this study, we isolated fourteen endophytic fungi from the plants Ceriops decandra and Avicennia officinalis collected from the Sundarbans. Five of them were identified as Aspergillus sp. and one as Penicillium sp. by macroscopic and microscopic observation. Antibacterial activity of the crude extracts obtained from these endophytes was determined against Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa using resazurin-based microtiter assay. The isolated endophytes showed varying degrees of antibacterial activity with MICs ranging between 5 and 0.078 mg/mL. Molecular identification of the most active endophyte revealed its identity as Aspergillus fumigatus obtained from the leaves of C. decandra. Acute toxicity study of the ethyl acetate extract of A. fumigatus in mice revealed no mortality even at the highest dose of 2000 mg/kg bodyweight, though some opposing results are found in the subacute toxicity study. The extract was subjected to silica gel and Sephadex column chromatography resulting in the isolation of three pure compounds. LC-MS analysis of these pure compounds revealed their identity as fumigaclavine C, azaspirofuran B, and fraxetin. This is the first report of fraxetin from A. fumigatus. All three identified compounds were previously reported for their antibacterial activity against different strains of both Gram-positive and Gram-negative bacteria. Therefore, the observed antibacterial activity of the ethyl acetate (EtOAc) extract of A. fumigatus could be due to the presence of these compounds. These results support the notion of investigating fungal endophytes from the Sundarbans for new antimicrobial compounds

    Pesticidal Activity of Sundarban Mangrove Plant Extracts against Sitophilus Pests and Identification of Active Constituents Using LC-MS.

    Get PDF
    Plants act as a rich source of novel natural pesticides. In the backdrop of the recent revival of interest in developing plant-based insecticides, this study was carried out to investigate the pesticidal activity of Sundarban mangrove plants. A total of nine different plant parts from five plants, namely, Aegiceras corniculatum, Excoecaria agallocha, Heritiera fomes, Xylocarpus moluccensis, and Xylocarpus granatum, were extracted with methanol and tested for insecticidal activity against two common stored product pests Sitophilus oryzae and Sitophilus zeamais using direct contact feeding deterrent wafer disc method. Three bark extracts from A. corniculatum, E. agallocha, and H. fomes showed potent and statistically significant insecticidal activity against both S. oryzae and S. zeamais pests (80-100% mortality). All the active bark extracts were further fractionated using C-18 solid-phase extraction (SPE) columns and tested for their insecticidal activity against S. oryzae pest to identify the active fraction. Only the SPE4 fraction (100% MeOH) from all the three active plants showed the activity against S. oryzae pest with a lethal concentration 50% (LC50) value of 0.5, 1.0, and 1.5 mg/disc for A. corniculatum, E. agallocha, and H. fomes, respectively. The active fraction of A. corniculatum was further profiled for identification of active compounds using LC-ESI-MS and identified (along with some unknown peaks) two previously reported compounds at m/z 625.17630 (isorhamnetin 3-O-rutinoside) and 422.25346 (paspaline) as major constituents. Insecticidal activities of these plants are reported in this study for the first time and would be useful in promoting research aiming for the development of new biopesticides from mangrove plants

    A systematic review on antioxidant and anti-inflammatory activity of Sesame (Sesamum indicum L.) oil and further confirmation of anti-inflammatory activity by chemical profiling and molecular docking

    Get PDF
    Traditionally sesame oil has been used as a popular food and medicine. The review aims to summarize the antioxidant and anti-inflammatory effects of sesame oil (SO) and its identified compounds as well as further fatty acid profiling and molecular docking study to correlate the interaction of its identified constituents with COX-2. For this, a literature study was made using Google Scholar, Pubmed and SciFinder databases. Literature study demonstrated that SO has potential antioxidant and anti-inflammatory effects in various test systems, including humans, animals and cultured cells through various pathways such as inhibition of COX, non-enzymatic defense mechanism, inhibition of pro-inflammatory cytokines, NF-kB or MAPK signaling and prostaglandin synthesis pathway. Fatty acidanalysis of SO using gas chromatography identified known 9 fatty acids.In-silico study revealed thatsesamin, sesaminol, sesamolin, stigmasterol, Δ5-avenasterol, and Δ7-avenasterol(-9.6 to -10.7 kcal/mol) were the most efficient ligand for interaction and binding with COX-2. The known fatty acid were also showed binding efficiency with COX-2 to some extent (-6.0 to -8.4 kcal/mol).In summary, it is evident that sesame oil may be one of promising traditional medicine that we could use in the prevention and management of diseases associated with oxidative stress and inflammation

    A systematic review on anti-diabetic and cardioprotective effects of gallic acid: A widespread dietary phytoconstituent

    Get PDF
    Gallic acid (GA) is a bioactive phytoconstituent that has been reported to prevent a number of diseases. However, there is no systematic review to-date on its anti-diabetic and cardioprotective potential including molecular mechanisms for such activities. This review aims to summarize the anti-diabetic and cardioprotective effects of GA and further propose a molecular mechanism of its anti-diabetic effects. Accumulation of associated literature was conducted through the use of databases including Google Scholar, PubMed, Web of Science, Science Direct and Scopus databases. Articles published until December 2018 were extracted and all the retracted articles were sorted based on the inclusion and exclusion criteria and relevant articles were further consulted for necessary information. We have found substantial investigations in animals and cultured cells that supports anti-diabetic and cardioprotective effects of GA with several underlying mechanisms including antioxidant enzyme systems and non-enzymatic defense mechanisms. The reported antioxidant activity of GA as well as the modulation of some key proteins linked to diabetes could be a part of the mechanisms by which GA showed anti-diabetic effect. In summary, it is evident that GA is one of the promising dietary phytochemicals that could be beneficial for the treatment and management of diabetes and associated myocardial damage

    Identification of Host-Dependent Survival Factors for Intracellular Mycobacterium tuberculosis through an siRNA Screen

    Get PDF
    The stable infection of host macrophages by Mycobacterium tuberculosis (Mtb) involves, and depends on, the attenuation of the diverse microbicidal responses mounted by the host cell. This is primarily achieved through targeted perturbations of the host cellular signaling machinery. Therefore, in view of the dependency of the pathogen on host molecules for its intracellular survival, we wanted to test whether targeting such factors could provide an alternate route for the therapeutic management of tuberculosis. To first identify components of the host signaling machinery that regulate intracellular survival of Mtb, we performed an siRNA screen against all known kinases and phosphatases in murine macrophages infected with the virulent strain, H37Rv. Several validated targets could be identified by this method where silencing led either to a significant decrease, or enhancement in the intracellular mycobacterial load. To further resolve the functional relevance of these targets, we also screened against these identified targets in cells infected with different strains of multiple drug-resistant mycobacteria which differed in terms of their intracellular growth properties. The results obtained subsequently allowed us to filter the core set of host regulatory molecules that functioned independently of the phenotypic variations exhibited by the pathogen. Then, using a combination of both in vitro and in vivo experimentation, we could demonstrate that at least some of these host factors provide attractive targets for anti-TB drug development. These results provide a “proof-of-concept” demonstration that targeting host factors subverted by intracellular Mtb provides an attractive and feasible strategy for the development of anti-tuberculosis drugs. Importantly, our findings also emphasize the advantage of such an approach by establishing its equal applicability to infections with Mtb strains exhibiting a range of phenotypic diversifications, including multiple drug-resistance. Thus the host factors identified here may potentially be exploited for the development of anti-tuberculosis drugs

    The Interplay between Protein L-Isoaspartyl Methyltransferase Activity and Insulin-Like Signaling to Extend Lifespan in Caenorhabditis elegans

    Get PDF
    The protein L-isoaspartyl-O-methyltransferase functions to initiate the repair of isomerized aspartyl and asparaginyl residues that spontaneously accumulate with age in a variety of organisms. Caenorhabditis elegans nematodes lacking the pcm-1 gene encoding this enzyme display a normal lifespan and phenotype under standard laboratory growth conditions. However, significant defects in development, egg laying, dauer survival, and autophagy have been observed in pcm-1 mutant nematodes when deprived of food and when exposed to oxidative stress. Interestingly, overexpression of this repair enzyme in both Drosophila and C. elegans extends adult lifespan under thermal stress. In this work, we show the involvement of the insulin/insulin-like growth factor-1 signaling (IIS) pathway in PCM-1-dependent lifespan extension in C. elegans. We demonstrate that reducing the levels of the DAF-16 downstream transcriptional effector of the IIS pathway by RNA interference reduces the lifespan extension resulting from PCM-1 overexpression. Using quantitative real-time PCR analysis, we show the up-regulation of DAF-16-dependent stress response genes in the PCM-1 overexpressor animals compared to wild-type and pcm-1 mutant nematodes under mild thermal stress conditions. Additionally, similar to other long-lived C. elegans mutants in the IIS pathway, including daf-2 and age-1 mutants, PCM-1 overexpressor adult animals display increased resistance to severe thermal stress, whereas pcm-1 mutant animals survive less long under these conditions. Although we observe a higher accumulation of damaged proteins in pcm-1 mutant nematodes, the basal level of isoaspartyl residues detected in wild-type animals was not reduced by PCM-1 overexpression. Our results support a signaling role for the protein L-isoaspartyl methyltransferase in lifespan extension that involves the IIS pathway, but that may be independent of its function in overall protein repair

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore