89 research outputs found

    X-ray and Optical Study of Low Core Density Globular Clusters NGC6144 and E3

    Get PDF
    We report on the Chandra X-ray Observatory and Hubble Space Telescope observation of two low core density globular clusters, NGC6144 and E3. By comparing the number of X-ray sources inside the half-mass radius to those outside, we found 6 X-ray sources within the half-mass radius of NGC6144, among which 4 are expected to be background sources; 3 X-ray sources are also found within the half-mass radius of E3, of which 3 is expected to be background source. Therefore, we cannot exclude that all our sources are background sources. However, combining the results from X-ray and optical observations, we found that 1-2 sources in NGC6144 and 1 source in E3 are likely to be cataclysmic variables and that 1 source in NGC6144 is an active binary, based on the X-ray and optical properties. The number of faint X-ray sources in NGC6144 and E3 found with Chandra and HST is higher than a prediction based on collision frequency, but is closer to that based on mass. Our observations strongly suggest that the compact binary systems in NGC6144 and E3 are primordial in origin.Comment: 28 pages, 9 figures, 6 tables, Accepted for publication in Ap

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Graphene quantum dots from chemistry to applications

    Get PDF
    Graphene quantum dots (GQDs) have been widely studied in recent years due to its unique structure-related properties, such as optical, electrical and optoelectrical properties. GQDs are considered new kind of quantum dots (QDs), as they are chemically and physically stable because of its intrinsic inert carbon property. Furthermore, GQDs are environmentally friendly due to its non-toxic and biologically inert properties, which have attracted worldwide interests from academic and industry. In this review, a number of GQDs preparation methods, such as hydrothermal method, microwave-assisted hydrothermal method, soft-template method, liquid exfoliation method, metal-catalyzed method and electron beam lithography method etc., are summarized. Their structural, morphological, chemical composition, optical, electrical and optoelectrical properties have been characterized and studied. A variety of elemental dopant, such as nitrogen, sulphur, chlorine, fluorine and potassium etc., have been doped into GQDs to diversify the functions of the material. The control of its size and shape has been realized by means of preparation parameters, such as synthesis temperature, growth time, source concentration and catalyst etc. As far as energy level engineering is concerned, the elemental doping has shown an introduction of energy level in GQDs which may tune the optical, electrical and optoelectrical properties of the GQDs. The applications of GQDs in biological imaging, optoelectrical detectors, solar cells, light emitting diodes, fluorescent agent, photocatalysis, and lithium ion battery are described. GQD composites, having optimized contents and properties, are also discussed to extend the applications of GQDs. Basic physical and chemical parameters of GQDs are summarized by tables in this review, which will provide readers useful information

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore