85 research outputs found

    Neuroendocrine subtypes of small cell lung cancer differ in terms of immune microenvironment and checkpoint molecule distribution

    Get PDF
    Small cell lung cancer (SCLC) has recently been subcategorized into neuroendocrine (NE)-high and NE-low subtypes showing 'immune desert' and 'immune oasis' phenotypes, respectively. Here, we aimed to characterize the tumor microenvironment according to immune checkpoints and NE subtypes in human SCLC tissue samples at the protein level. In this cross-sectional study, we included 32 primary tumors and matched lymph node (LN) metastases of resected early-stage, histologically confirmed SCLC patients, which were previously clustered into NE subtypes using NE-associated key RNA genes. Immunohistochemistry (IHC) was performed on formalin-fixed paraffin-embedded TMAs with antibodies against CD45, CD3, CD8, MHCII, TIM3, immune checkpoint poliovirus receptor (PVR), and indoleamine 2,3-dioxygenase (IDO). The stroma was significantly more infiltrated by immune cells both in primary tumors and in LN metastases compared to tumor nests. Immune cell (CD45+ cell) density was significantly higher in tumor nests (P = 0.019), with increased CD8+ effector T-cell infiltration (P = 0.003) in NE-low vs NE-high tumors. The expression of IDO was confirmed on stromal and endothelial cells and was positively correlated with higher immune cell density both in primary tumors and in LN metastases, regardless of the NE pattern. Expression of IDO and PVR in tumor nests was significantly higher in NE-low primary tumors (vs NE-high, P < 0.05). We also found significantly higher MHC II expression by malignant cells in NE-low (vs NE-high, P = 0.004) tumors. TIM3 expression was significantly increased in NE-low (vs NE-high, P < 0.05) tumors and in LN metastases (vs primary tumors, P < 0.05). To our knowledge, this is the first human study that demonstrates in situ that NE-low SCLCs are associated with increased immune cell infiltration compared to NE-high tumors. PVR, IDO, MHCII, and TIM3 are emerging checkpoints in SCLC, with increased expression in the NE-low subtype, providing key insight for further prospective studies on potential biomarkers and targets for SCLC immunotherapies

    Analysis of Driver Mutations in Female Non-Smoker Asian Patients with Pulmonary Adenocarcinoma

    Get PDF
    Amory Company; Science and Technology Commission of Shanghai Municipality [06DZ19502]Previous studies have revealed that EGFR mutation and/or EML4-ALK gene fusion rate was higher in the non-smoker Asian females with pulmonary adenocarcinoma. The aim of this study is to determine the distribution of known oncogenic driver mutations in the female non-smoker Asian patients with pulmonary adenocarcinoma. 104 consecutively resected lung adenocarcinomas from 396 non-smoker females (less than 100 cigarettes in a lifetime) at a single institution (Tongji University, Shanghai, China) were analyzed for mutations in EGFR, EML4-ALK, KRAS, HER2, BRAF, and PIK3CA. 73 (70.2 %) tumors harbored EGFR mutations; among these, 28 were deletions in exon 19, 44 were L858R missense changes, and eight were T790M mutations. 10 (9.6 %) harbored EML4-ALK fusions, two harbored KRAS mutations, two harbored BRAF mutations, and two harbored PI3K mutations. A majority of the mutations were mutually exclusive, except two with EGFR mutation and BRAF mutation, one with EML4-ALK fusions and PI3K mutation. Thus, 82.7 % (86 of 104; 95 % CI, 75.4-90.0 %) of lung adenocarcinomas from non-smoker females were found to harbor the well-known oncogenic mutations in five genes. Lung cancer in non-smoking Asian females is a distinct entity, with majority of this subgroup being developed by the oncogenic mutations. The prospective mutation examination in this population will be helpful for devising a targeted therapy for a majority of the patients

    3D bioactive composite scaffolds for bone tissue engineering

    Get PDF
    Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed

    Perspective of Precision Therapy on Lung Cancer

    No full text
    Lung cancer remains to have the highest morbidity and mortality rates in China among known malignant tumors. Novel drugs and regimens have been sought because of the limited efficiency of traditional chemotherapy and radiotherapy in lung cancer treatment. In the last 20 years, rapid developments in molecular targeted therapy and immunotherapy have increased clinical efficacy and benefitted patients with cancer. Treatments for lung cancer are the most rapidly developed among treatments for solid tumors, pioneering tumor precision medicine. This manuscript reviews the evolution and development of targeted therapy and immunotherapy and discusses existing problems and future directions in the precision therapy of lung cancer

    Four Cases of Interstitial Lung Disease Induced by Erlotinib 
and A Review of the Literatures

    No full text
    Erlotinib is an agent of oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors which are used for non-small cell lung cancer. Although this class of agents is considered to be relatively safe, the most serious, but rare, adverse reaction is drug-associated interstitial lung disease (ILD). ILD induced by gefitinib been often described, but the ILD induced by erlotinib is relatively less well known. We here describle four cases of ILD related to erlotinib and review recent literatures to help physicians earlier alert erlotinib-induced ILD. It is important to carefully monitor pulmonary symptoms in all patients who are receiving erlotinib. Early diagnosis and timely intervention is critical in the treatment of drug-induced ILD

    A Data-Driven Kernel Principal Component Analysis–Bagging–Gaussian Mixture Regression Framework for Pulverizer Soft Sensors Using Reduced Dimensions and Ensemble Learning

    No full text
    In light of the nonlinearity, high dimensionality, and time-varying nature of the operational conditions of the pulverizer in power plants, as well as the challenge of the real-time monitoring of quality variables in the process, a data-driven KPCA–Bagging–GMR framework for soft sensors using reduced dimensions and ensemble learning is proposed. Firstly, the methodology employs a Kernel Principal Component Analysis to effectively reduce the dimensionality of the collected process data in a nonlinear manner. Secondly, the reduced principal components are then utilized to reconstruct a refined set of input samples, followed by the application of the Bagging algorithm to obtain multiple subsets of the samples and develop corresponding Gaussian Mixture Regression models. Ultimately, the fusion output is achieved by calculating the weights of each local model based on Bayesian posterior probabilities. By conducting simulation experiments on the coal mill, the proposed approach has been validated as demonstrating superior predictive accuracy and excellent generalization capabilities

    Current status and future perspectives of bispecific antibodies in the treatment of lung cancer

    No full text
    Abstract. Monoclonal antibodies have been successfully incorporated into the current therapeutical landscape of lung cancer in the last decades. Recently, with technological advances, bispecific antibodies (bsAbs) have also shown robust efficacy in the treatment of malignant cancers, including lung cancer. These antibodies target two independent epitopes or antigens and have been extensively explored in translational and clinical studies in lung cancer. Here, we outline the mechanisms of action of bsAbs, related clinical data, ongoing clinical trials, and potent novel compounds of various types of bsAbs in clinical studies, especially in lung cancer. We also propose future directions for the clinical development of bsAbs, which might bring a new era of treatment for patients with lung cancer

    Immune-checkpoint inhibitors plus chemotherapy versus chemotherapy as first-line treatment for patients with extensive-stage small cell lung cancer

    No full text
    We performed a meta-analysis to comprehensively investigate the efficacy and safety of immune-checkpoint inhibitors (ICIs) plus chemotherapy in patients with extensive-stage small cell lung cancer (ES-SCLC). The primary outcome was overall survival (OS). The secondary outcomes included progression-free survival (PFS), objective response rate (ORR) and ≥grade 3 adverse events (AEs). A total of six studies involving 2905 patients were identified, including 469 patients receiving program death ligand 1 (PD-L1) inhibitor plus chemotherapy, 308 receiving PD-1 inhibitors plus chemotherapy, 563 receiving CTLA-4 inhibitors plus chemotherapy, 268 receiving PD-L1/CTLA-4 inhibitors plus chemotherapy, and 1297 receiving chemotherapy alone. 10.8% (283/2615) patients had baseline brain metastases (BMs). Notably, ICIs plus chemotherapy was associated with significantly improved OS (HR, 0.82; 95% CI, 0.75 to 0.89). Subgroup analyses revealed that PD-1 inhibitors (HR, 0.77; 95% CI, 0.64 to 0.92) and PD-L1 inhibitors (HR, 0.73; 95% CI, 0.63 to 0.85) plus chemotherapy yielded a statistically significant improvement in OS while CTLA-4 inhibitors did not (HR, 0.92; 95% CI, 0.81 to 1.06). In patients with baseline BMs, ICIs plus chemotherapy showed no survival benefits over chemotherapy alone (HR, 1.23; 95% CI, 0.92 to 1.64). ICIs plus chemotherapy also significantly prolonged PFS (HR, 0.81; 95% CI, 0.75 to 0.87) while the pooled ORRs were comparable between ICIs plus chemotherapy and chemotherapy alone (RR, 1.04; 95% CI, 0.99 to 1.10). Patients treated with CTLA-4 inhibitors (relative risk (RR), 1.12; 95% CI, 0.99 to 1.28) experienced more≥grade 3 AEs than those treated with PD-1/PD-L1 inhibitors (RR, 1.03; 95% CI, 0.96 to 1.11). The addition of PD-1/PD-L1 inhibitors to chemotherapy resulted in significant improvements in both PFS and OS for patients with treatment-naïve ES-SCLC, not at the cost of increased AEs
    • …
    corecore