34 research outputs found

    Cadherin-26 (CDH26) regulates airway epithelial cell cytoskeletal structure and polarity.

    Get PDF
    Polarization of the airway epithelial cells (AECs) in the airway lumen is critical to the proper function of the mucociliary escalator and maintenance of lung health, but the cellular requirements for polarization of AECs are poorly understood. Using human AECs and cell lines, we demonstrate that cadherin-26 (CDH26) is abundantly expressed in differentiated AECs, localizes to the cell apices near ciliary membranes, and has functional cadherin domains with homotypic binding. We find a unique and non-redundant role for CDH26, previously uncharacterized in AECs, in regulation of cell-cell contact and cell integrity through maintaining cytoskeletal structures. Overexpression of CDH26 in cells with a fibroblastoid phenotype increases contact inhibition and promotes monolayer formation and cortical actin structures. CDH26 expression is also important for localization of planar cell polarity proteins. Knockdown of CDH26 in AECs results in loss of cortical actin and disruption of CRB3 and other proteins associated with apical polarity. Together, our findings uncover previously unrecognized functions for CDH26 in the maintenance of actin cytoskeleton and apicobasal polarity of AECs

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma

    Get PDF
    A causative understanding of genetic factors that regulate glioblastoma pathogenesis is of central importance. Here we developed an adeno-associated virus-mediated, autochthonous genetic CRISPR screen in glioblastoma. Stereotaxic delivery of a virus library targeting genes commonly mutated in human cancers into the brains of conditional-Cas9 mice resulted in tumors that recapitulate human glioblastoma. Capture sequencing revealed diverse mutational profiles across tumors. The mutation frequencies in mice correlated with those in two independent patient cohorts. Co-mutation analysis identified co-occurring driver combinations such as B2m-Nf1, Mll3-Nf1 and Zc3h13-Rb1, which were subsequently validated using AAV minipools. Distinct from Nf1-mutant tumors, Rb1-mutant tumors are undifferentiated and aberrantly express homeobox gene clusters. The addition of Zc3h13 or Pten mutations altered the gene expression profiles of Rb1 mutants, rendering them more resistant to temozolomide. Our study provides a functional landscape of gliomagenesis suppressors in vivo

    The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella

    Get PDF
    Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores

    Physical activity attenuates the influence of FTO variants on obesity risk: A meta-analysis of 218,166 adults and 19,268 children

    Get PDF
    Background: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). Methods and Findings: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r2>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (pinteraction= 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. Concl

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory

    Get PDF

    ThermoMouse: An In Vivo Model to Identify Modulators of UCP1 Expression in Brown Adipose Tissue

    Get PDF
    Summary: Obesity develops when energy intake chronically exceeds energy expenditure. Because brown adipose tissue (BAT) dissipates energy in the form of heat, increasing energy expenditure by augmenting BAT-mediated thermogenesis may represent an approach to counter obesity and its complications. The ability of BAT to dissipate energy is dependent on expression of mitochondrial uncoupling protein 1 (UCP1). To facilitate the identification of pharmacological modulators of BAT UCP1 levels, which may have potential as antiobesity medications, we developed a transgenic model in which luciferase activity faithfully mimics endogenous UCP1 expression and its response to physiologic stimuli. Phenotypic screening of a library using cells derived from this model yielded a small molecule that increases UCP1 expression in brown fat cells and mice. Upon adrenergic stimulation, compound-treated mice showed increased energy expenditure. These tools offer an opportunity to identify pharmacologic modulators of UCP1 expression and uncover regulatory pathways that impact BAT-mediated thermogenesis. : Pharmacological activation of brown adipose tissue (BAT) thermogenesis and energy dissipation, a process mediated by UCP1, may be useful to counter the energy imbalance that engenders obesity. Galmozzi et al. have developed an in vivo model to monitor UCP1 expression in real time and identified a small molecule that increases UCP1 levels. Mice treated with this molecule show greater energy expenditure upon adrenergic stimulation. Discovery of compounds with this ability is an important stride toward enhancing BAT function in obese individuals

    Phosphoproteomics Identifies CK2 as a Negative Regulator of Beige Adipocyte Thermogenesis and Energy Expenditure.

    Get PDF
    Catecholamines promote lipolysis both in brown and white adipocytes, whereas the same stimuli preferentially activate thermogenesis in brown adipocytes. Molecular mechanisms for the adipose-selective activation of thermogenesis remain poorly understood. Here, we employed quantitative phosphoproteomics to map global and temporal phosphorylation profiles in brown, beige, and white adipocytes under β3-adrenenoceptor activation and identified kinases responsible for the adipose-selective phosphorylation profiles. We found that casein kinase2 (CK2) activity is preferentially higher in white adipocytes than brown/beige adipocytes. Genetic or pharmacological blockade of CK2 in white adipocytes activates the thermogenic program in response to cAMP stimuli. Such activation is largely through reduced CK2-mediated phosphorylation of class I HDACs. Notably, inhibition of CK2 promotes beige adipocyte biogenesis and leads to an increase in whole-body energy expenditure and ameliorates diet-induced obesity and insulin resistance. These results indicate that CK2 is a plausible target to rewire the β3-adrenenoceptor signaling cascade that promotes thermogenesis in adipocytes
    corecore