35 research outputs found

    Monitoring and quantifying forest degradation: remote sensing approaches for applied conservation in the Congo Basin

    Get PDF
    Wälder spielen global eine entscheidende Rolle bei der Regulierung des Weltklimas, da sie aktiv Kohlenstoff speichern und binden. Trotz der Bemühungen durch internationale Programme nehmen die Waldschäden weiter zu. Entwaldung und Walddegradierung sind zwei unterschiedliche Prozesse, die sich auf die globalen Wälder auswirken. Entwaldung ist eine klar definierte Umwandlung oder Abholzung der Waldflächen, während Degradierung subtiler, vorübergehend und variabel sein kann und daher schwer zu detektieren ist. Walddegradierung wird im Allgemeinen als eine funktionale Verringerung der Fähigkeit von Wäldern Ökosystemleistungen zu erbringen identifiziert. Sie wird nicht als Veränderung der Landbedeckung oder Entwaldung klassifiziert. Daraus folgt keine deutliche Verringerung der Waldfläche, sondern eher eine Abnahme der Qualität und des Zustands. Diese Veränderung kann, wie die Entwaldung dennoch mit einer signifikanten Verringerung der oberirdischen Biomasse und damit miterheblichen Treibhausgasemissionen verbunden sein. Die Schätzungen der Kohlenstoffemissionen aus Waldstörungen liegen zwischen 12 und 20 % aller weltweit emittierten Emissionen. Durch eine fehlende einheitliche Definition oder Methode zur Quantifizierung der Degradation, der Vielzahl an Einflussfaktoren und der Unsicherheit bei der Schätzung der Biomasse variieren die Werte stark. Die von der Walddegradierung betroffene Fläche könnte in der Tat viel größer sein als die der Entwaldung, die ohnehin jedes Jahr auf eine Fläche von etwa der Größe Islands geschätzt wird. Die REDD+-Mechanismen zur Finanzierung von Emissionsreduktionen zur Minderung des Klimawandels erfordern robuste, transparente und skalierbare Methoden zur Quantifizierung der Walddegradierung, zusammen mit der Erfassung der damit verbundenen Treibern. Da die Degradierung oft der Entwaldung vorausgeht, kann ein schnelles Monitoring mit einer Beurteilung der Waldschäden und ihren Treibern ein wichtiges Frühwarnsystem sein. Nur so können Maßnahmen frühzeitig ergriffen werden, die die Wälder schützen und sowohl der Natur und der Biodiversität als auch dem Lebensunterhalt, der Gesundheit und dem Wohlbefinden von Millionen von Menschen auf der ganzen Welt zugute kommen. In dieser Arbeit werden Methoden für konsistente, reproduzierbare, skalierbare und satellitengestützte Indikatoren zur Identifizierung und Quantifizierung verschiedener Arten von Walddegradation um zukünftige Risiko- und Politikszenarien zu unterstützen.Global forests play a crucial role in regulating global climate by actively storing and sequestering carbon. Despite efforts to mitigate climate through international efforts, human-caused forest disturbance and forest-related greenhouse gas emissions continue to rise. Deforestation and forest degradation are two different processes affecting global forests. Deforestation is a clearly defined conversion or removal of forest cover, while degradation can be more subtle, temporary, variable, and therefore difficult to detect. Forest degradation is generally identified as a functional reduction in the capacity of forests to provide ecosystem services, that does not qualify as a change in land cover or forest clearing. That means no clear reduction of the forest area, but rather a decrease in quality and condition. This change, like deforestation can still be associated with significant reductions in above-ground biomass and therefore considerable greenhouse gas emissions. Estimates of carbon emissions from forest degradation and disturbance range anywhere from 12-20% of all emissions emitted globally with values varying widely because of a lack of uniform definition or method for quantifying degradation, the broad number of influencing factors, and uncertainty in biomass estimates. The area affected by forest degradation could in fact be much larger than that of deforestation, which is already estimated to be an area about the size of Iceland every year. The REDD+ mechanisms of financing emissions reductions to mitigate climate change require robust, transparent and scalable methods for quantifying degradation, along with a quantification of associated direct drivers. Furthermore, as degradation often precedes deforestation, timely monitoring and assessment of forest degradation and changes in drivers can provide crucial early warning to engage interventions to keep forests intact, benefitting nature and biodiversity as well as the livelihoods, health and well-being of millions of people around the world. This research proposes methods for consistent, repeatable and scalable satellite-derived indicators for identifying and quantifying different types of forest degradation and its causes to inform future risk and policy scenarios

    Modelling the Species Distribution of Flat-Headed Cats (Prionailurus planiceps), an Endangered South-East Asian Small Felid

    Get PDF
    Background: The flat-headed cat (Prionailurus planiceps) is one of the world’s least known, highly threatened felids with a distribution restricted to tropical lowland rainforests in Peninsular Thailand/Malaysia, Borneo and Sumatra. Throughout its geographic range large-scale anthropogenic transformation processes, including the pollution of fresh-water river systems and landscape fragmentation, raise concerns regarding its conservation status. Despite an increasing number of cameratrapping field surveys for carnivores in South-East Asia during the past two decades, few of these studies recorded the flatheaded cat. Methodology/Principal Findings: In this study, we designed a predictive species distribution model using the Maximum Entropy (MaxEnt) algorithm to reassess the potential current distribution and conservation status of the flat-headed cat. Eighty-eight independent species occurrence records were gathered from field surveys, literature records, and museum collections. These current and historical records were analysed in relation to bioclimatic variables (WorldClim), altitude (SRTM) and minimum distance to larger water resources (Digital Chart of the World). Distance to water was identified as the key predictor for the occurrence of flat-headed cats (.50% explanation). In addition, we used different land cover maps (GLC2000, GlobCover and SarVision LLC for Borneo), information on protected areas and regional human population density data to extract suitable habitats from the potential distribution predicted by the MaxEnt model. Between 54% and 68% of suitable habitat has already been converted to unsuitable land cover types (e.g. croplands, plantations), and only between 10% and 20% of suitable land cover is categorised as fully protected according to the IUCN criteria. The remaining habitats are highly fragmented and only a few larger forest patches remain. Conclusion/Significance: Based on our findings, we recommend that future conservation efforts for the flat-headed cat should focus on the identified remaining key localities and be implemented through a continuous dialogue between local stakeholders, conservationists and scientists to ensure its long-term survival. The flat-headed cat can serve as a flagship species for the protection of several other endangered species associated with the threatened tropical lowland forests and surface fresh-water sources in this region

    Stable Photosymbiotic Relationship under CO2-Induced Acidification in the Acoel Worm Symsagittifera Roscoffensis

    Get PDF
    As a consequence of anthropogenic CO2 emissions, oceans are becoming more acidic, a phenomenon known as ocean acidification. Many marine species predicted to be sensitive to this stressor are photosymbiotic, including corals and foraminifera. However, the direct impact of ocean acidification on the relationship between the photosynthetic and nonphotosynthetic organism remains unclear and is complicated by other physiological processes known to be sensitive to ocean acidification (e.g. calcification and feeding). We have studied the impact of extreme pH decrease/pCO2 increase on the complete life cycle of the photosymbiotic, non-calcifying and pure autotrophic acoel worm, Symsagittifera roscoffensis. Our results show that this species is resistant to high pCO2 with no negative or even positive effects on fitness (survival, growth, fertility) and/or photosymbiotic relationship till pCO2 up to 54 K µatm. Some sub-lethal bleaching is only observed at pCO2 up to 270 K µatm when seawater is saturated by CO2. This indicates that photosymbiosis can be resistant to high pCO2. If such a finding would be confirmed in other photosymbiotic species, we could then hypothesize that negative impact of high pCO2 observed on other photosymbiotic species such as corals and foraminifera could occur through indirect impacts at other levels (calcification, feeding)

    Artificial Cognition for Social Human-Robot Interaction: An Implementation

    Get PDF
    © 2017 The Authors Human–Robot Interaction challenges Artificial Intelligence in many regards: dynamic, partially unknown environments that were not originally designed for robots; a broad variety of situations with rich semantics to understand and interpret; physical interactions with humans that requires fine, low-latency yet socially acceptable control strategies; natural and multi-modal communication which mandates common-sense knowledge and the representation of possibly divergent mental models. This article is an attempt to characterise these challenges and to exhibit a set of key decisional issues that need to be addressed for a cognitive robot to successfully share space and tasks with a human. We identify first the needed individual and collaborative cognitive skills: geometric reasoning and situation assessment based on perspective-taking and affordance analysis; acquisition and representation of knowledge models for multiple agents (humans and robots, with their specificities); situated, natural and multi-modal dialogue; human-aware task planning; human–robot joint task achievement. The article discusses each of these abilities, presents working implementations, and shows how they combine in a coherent and original deliberative architecture for human–robot interaction. Supported by experimental results, we eventually show how explicit knowledge management, both symbolic and geometric, proves to be instrumental to richer and more natural human–robot interactions by pushing for pervasive, human-level semantics within the robot's deliberative system

    Proximate Causes of Forest Degradation in the Democratic Republic of the Congo Vary in Space and Time

    Get PDF
    Forest degradation, generally defined as a reduction in the delivery of forest ecosystem services, can have long-term impacts on biodiversity, climate, and local livelihoods. The quantification of forest degradation, its dynamics and proximate causes can help prompt early action to mitigate carbon emissions and inform relevant land use policies. The Democratic Republic of the Congo is largely forested with a relatively low deforestation rate, but anthropogenic degradation has been increasing in recent years. We assess the impact of eight independent variables related to land cover, land use, infrastructure, armed conflicts, and accessibility on forest degradation, measured by the Forest Condition (FC) index, a measure of forest degradation based on biomass history and fragmentation that ranges from 0 (completely deforested) to 100 (intact). We employ spatial panel models with fixed effects using regular 25 × 25 km units over five 3-year intervals from 2002 to 2016. The regression results suggest that the presence of swamp ecosystems, low access (defined by high travel time), and forest concessions are associated with lower forest degradation, while built up area, fire frequency, armed conflicts result in greater forest degradation. The impact of neighboring units on FC shows that all variables within the 50 km spatial neighborhood have a greater effect on FC than the on-site spatial determinants, indicating the greater influence of drivers beyond the 25 km2 unit. In the case of protected areas, we unexpectedly find that protection in neighboring locations leads to higher forest degradation, suggesting a potential leakage effect, while protected areas in the local vicinity have a positive influence on FC. The Mann-Kendall trend statistic of occurrences of fires and conflicts over the time period and until 2020 show that significant increases in conflicts and fires are spatially divergent. Overall, our results highlight how assessing the proximate causes of forest degradation with spatiotemporal analysis can support targeted interventions and policies to reduce forest degradation but spillover effects of proximal drivers in neighboring areas need to be considered.Peer Reviewe

    Comparison of Two Independent Mapping Exercises in the Primeiras and Segundas Archipelago, Mozambique

    No full text
    Production of coral reef habitat maps from high spatial resolution multispectral imagery is common practice and benefits from standardized accuracy assessment methods and many informative studies on the merits of different processing algorithms. However, few studies consider the full production workflow, including factors such as operator influence, visual interpretation and a-priori knowledge. An end-user might justifiably ask: Given the same imagery and field data, how consistent would two independent production efforts be? This paper is a post-study analysis of a project in which two teams of researchers independently produced maps of six coral reef systems of the archipelago of the Primeiras and Segundas Environmental Protected Area (PSEPA), Mozambique. Both teams used the same imagery and field data, but applied different approaches—pixel based vs. object based image analysis—and used independently developed classification schemes. The results offer a unique perspective on the map production process. Both efforts resulted in similar merged classes accuracies, averaging at 63% and 64%, but the maps were distinct in terms of scale of spatial patterns, classification disparities, and in other aspects where the mapping process is reliant on visual interpretation. Despite the difficulty in aligning the classification schemes clear patterns of correspondence and discrepancy were identified. The maps were consistent with respect to geomorphological level mapping (17 out of 30 paired comparisons at more than 75% agreement), and also agreed in the extent of coral containing areas within a difference of 16% across the archipelago. However, more detailed benthic habitat level classes were inconsistent. Mapping of deep benthic cover was the most subjective result and dependent on operator visual interpretation, yet this was one of the results of highest interest for the PSEPA management since it revealed a continuity of benthos between the islands and the impression of a proto-barrier reef

    Forest condition in the Congo Basin for the assessment of ecosystem conservation status

    Get PDF
    Quantifying ecological condition, notably the extent of forest degradation is important for understanding and designing measures to protect biodiversity and enhancing the capacity of forests to deliver ecosystem services. Conservation planning, particularly the prioritization of management interventions for forests, is often lacking spatial data on forest degradation, and it is often overlooked within decision-making processes. We develop a continuous metric termed Forest Condition (FC) which aims to measure the degree of forest degradation on a scale from 0 to 100, incorporating the temporal history of forest change over any spatial extent. We parameterize this metric based on estimated changes in above ground biomass in the context of forest fragmentation over time to estimate a continuous measure of forest degradation for Congo Basin countries. We estimate that just <70% of Congo Basin forests remain fully intact, a decrease from 78% in the year 2000. FC was validated by direct remote sensing measurements from Landsat imagery for DRC. Results showed that FC was significantly positively correlated with forest canopy cover, gap area per hectare, and magnitude of temporal change in Normalized Burn Ratio. We tested the ability of FC to distinguish primary and secondary degradation and deforestation and found significant differences in gap area and spectral anomalies to validate our theoretical model. We apply the IUCN Red List of Ecosystems criteria to demonstrate the integration of forest condition to assess the risk of ecosystem collapse. Based on this assessment, we found that without including FC in the assessment of biotic disruption, 12 ecosystems representing over 11% of forested area in 2015 would not have been assigned a threat status, and an additional 9 ecosystems would have a lower threat status. Our overall assessment of ecosystems found about half of all Congo Basin ecosystem types, accounting for 20% of all forest area are threatened to some degree, including 4 ecosystems (<1% of total area) which are critically engendered. FC is a transferrable and scalable assessment to support forest monitoring, planning, and management

    Forest Cover and Vegetation Degradation Detection in the Kavango Zambezi Transfrontier Conservation Area Using BFAST Monitor

    No full text
    Forest cover and vegetation degradation was monitored across the Kavango-Zambezi Transfrontier Conservation Area (KAZA) in southern Africa and the performance of three different methods in detecting degradation was assessed using reference data. Breaks for Additive Season and Trend (BFAST) Monitor was used to identify potential forest cover and vegetation degradation using Landsat Normalized Difference Moisture Index (NDMI) time series data. Parametric probability-based magnitude thresholds, non-parametric random forest in conjunction with Soil-Adjusted Vegetation Index (SAVI) time series, and the combination of both methods were evaluated for their suitability to detect degradation for six land cover classes ranging from closed canopy forest to open grassland. The performance of degradation detection was largely dependent on tree cover and vegetation density. Satisfactory accuracies were obtained for closed woodland (user’s accuracy 87%, producer’s accuracy 71%) and closed forest (user’s accuracy 92%, producer’s accuracy 90%), with lower accuracies for open canopies. The performance of the three methods was more similar for closed canopies and differed for land cover classes with open canopies. Highest user’s accuracy was achieved when methods were combined, and the best performance for producer’s accuracy was obtained when random forest was used

    Using fragmentation to assess degradation of forest edges in Democratic Republic of Congo

    Get PDF
    Abstract Background Recent studies have shown that fragmentation is an increasing threat to global forests, which has major impacts on biodiversity and the important ecosystem services provided by forested landscapes. Several tools have been developed to evaluate global patterns of fragmentation, which have potential applications for REDD+. We study how canopy height and above ground biomass (AGB) change across several categories of forest edges determined by fragmentation analysis. We use Democratic Republic of Congo (DRC) as an example. Results An analysis of variance of different edge widths and airborne estimated canopy height found that canopy heights were significantly different in forest edges at a distance of 100 m from the nonforest edge. Biomass was significantly different between fragmentation classes at an edge distance of 300 m. Core forest types were found to have significantly higher canopy height and greater AGB than forest edges and patches, where height and biomass decrease significantly as the level of fragmentation increases. A change analysis shows that deforestation and degradation are increasing over time and biomass loss associated with degradation account for at least one quarter of total loss. We estimate that about 80 % of primary forests are intact, which decreases 3.5 % over the 15 year study period, as primary forest is either deforested or transitioned to forest edge. While the carbon loss per hectare is lower than that of deforestation, degradation potentially affects up to three times more area than deforestation alone. Conclusions When defining forest degradation by decreased biomass without any loss in forest area, assessing transitions of core forest to edges over time can contribute an important element to REDD+MRV systems. The estimation of changes between different forest fragmentation types and their associated biomass loss can provide an estimate of degradation carbon emission factors. Forest degradation and emissions due to fragmentation are often underestimated and should comprise an essential component of MRV systems
    corecore