602 research outputs found

    Novel temperature stable high-ε r microwave dielectrics in the Bi 2 O 3 –TiO 2 –V 2 O 5 system

    Get PDF
    In the present work, a series of low temperature firing (1 − x)BiVO4–xTiO2 (x = 0.4, 0.50, 0.55 and 0.60) microwave dielectric ceramics was prepared using traditional solid state reaction method. From back-scattered electron images (BEI), X-ray diffraction (XRD) and energy dispersive analysis (EDS), there was negligible reaction between BiVO4 and TiO2 at the optimal sintering temperature ∼900 °C. As x increased from 0.4 to 0.60, permittivity (εr) increased from 81.8 to 87.7, quality factor value (Qf) decreased from 12 290 to 8240 GHz and temperature coefficient (TCF) shifted from −121 to +46 ppm per °C. Temperature stable microwave dielectric ceramic was obtained in 0.45BiVO4–0.55TiO2 composition sintered at 900 °C with a εr ∼ 86, a Qf ∼ 9500 GHz and a TCF ∼ −8 ppm per °C. Far-infrared reflectivity fitting indicated that stretching of Bi–O and Ti–O bonds in this system dominated dielectric polarization. This series of ceramics are promising not only for low temperature co-fired ceramic (LTCC) technology but also as substrates for physically and electrically small dielectrically loaded micro-strip patch antennas

    Structure–property relationships of iron arsenide superconductors

    Get PDF
    Iron based superconductors sent material scientists into a renewed excitement reminiscent of the time when the first high-Tc superconductors were discovered 25 years ago. This feature article reviews relationships between structural chemistry and magnetic as well as superconducting properties of iron arsenide compounds, which are outstandingly rich and uniquely coupled. Particular attention is paid to the nature of the structural phase transitions of the parent compounds and their possible origins, on effects of doping on the crystal structures and on the coexistence of magnetic ordering and superconductivity. In spite of the many fascinating insights that have already enriched the research on superconductivity, many questions are still open and prove iron based superconductors to be a good recipe for future discoveries in this lively field

    Marine Biodiversity in South Africa: An Evaluation of Current States of Knowledge

    Get PDF
    Continental South Africa has a coastline of some 3,650 km and an Exclusive Economic Zone (EEZ) of just over 1 million km2. Waters in the EEZ extend to a depth of 5,700 m, with more than 65% deeper than 2,000 m. Despite its status as a developing nation, South Africa has a relatively strong history of marine taxonomic research and maintains comprehensive and well-curated museum collections totaling over 291,000 records. Over 3 million locality records from more than 23,000 species have been lodged in the regional AfrOBIS (African Ocean Biogeographic Information System) data center (which stores data from a wider African region). A large number of regional guides to the marine fauna and flora are also available and are listed

    Relation between the Kantorovich-Wasserstein metric and the Kullback-Leibler divergence

    Get PDF
    We discuss a relation between the Kantorovich-Wasserstein (KW) metric and the Kullback-Leibler (KL) divergence. The former is defined using the optimal transport problem (OTP) in the Kantorovich formulation. The latter is used to define entropy and mutual information, which appear in variational problems to find optimal channel (OCP) from the rate distortion and the value of information theories. We show that OTP is equivalent to OCP with one additional constraint fixing the output measure, and therefore OCP with constraints on the KL-divergence gives a lower bound on the KW-metric. The dual formulation of OTP allows us to explore the relation between the KL-divergence and the KW-metric using decomposition of the former based on the law of cosines. This way we show the link between two divergences using the variational and geometric principles

    QDMR: a quantitative method for identification of differentially methylated regions by entropy

    Get PDF
    DNA methylation plays critical roles in transcriptional regulation and chromatin remodeling. Differentially methylated regions (DMRs) have important implications for development, aging and diseases. Therefore, genome-wide mapping of DMRs across various temporal and spatial methylomes is important in revealing the impact of epigenetic modifications on heritable phenotypic variation. We present a quantitative approach, quantitative differentially methylated regions (QDMRs), to quantify methylation difference and identify DMRs from genome-wide methylation profiles by adapting Shannon entropy. QDMR was applied to synthetic methylation patterns and methylation profiles detected by methylated DNA immunoprecipitation microarray (MeDIP-chip) in human tissues/cells. This approach can give a reasonable quantitative measure of methylation difference across multiple samples. Then DMR threshold was determined from methylation probability model. Using this threshold, QDMR identified 10 651 tissue DMRs which are related to the genes enriched for cell differentiation, including 4740 DMRs not identified by the method developed by Rakyan et al. QDMR can also measure the sample specificity of each DMR. Finally, the application to methylation profiles detected by reduced representation bisulphite sequencing (RRBS) in mouse showed the platform-free and species-free nature of QDMR. This approach provides an effective tool for the high-throughput identification of potential functional regions involved in epigenetic regulation

    Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data

    Get PDF
    Recently, a number of advanced screening technologies have allowed for the comprehensive quantification of aggravating and alleviating genetic interactions among gene pairs. In parallel, TAP-MS studies (tandem affinity purification followed by mass spectroscopy) have been successful at identifying physical protein interactions that can indicate proteins participating in the same molecular complex. Here, we propose a method for the joint learning of protein complexes and their functional relationships by integration of quantitative genetic interactions and TAP-MS data. Using 3 independent benchmark datasets, we demonstrate that this method is >50% more accurate at identifying functionally related protein pairs than previous approaches. Application to genes involved in yeast chromosome organization identifies a functional map of 91 multimeric complexes, a number of which are novel or have been substantially expanded by addition of new subunits. Interestingly, we find that complexes that are enriched for aggravating genetic interactions (i.e., synthetic lethality) are more likely to contain essential genes, linking each of these interactions to an underlying mechanism. These results demonstrate the importance of both large-scale genetic and physical interaction data in mapping pathway architecture and function

    Metagenomics of the Svalbard Reindeer Rumen Microbiome Reveals Abundance of Polysaccharide Utilization Loci

    Get PDF
    Lignocellulosic biomass remains a largely untapped source of renewable energy predominantly due to its recalcitrance and an incomplete understanding of how this is overcome in nature. We present here a compositional and comparative analysis of metagenomic data pertaining to a natural biomass-converting ecosystem adapted to austere arctic nutritional conditions, namely the rumen microbiome of Svalbard reindeer (Rangifer tarandus platyrhynchus). Community analysis showed that deeply-branched cellulolytic lineages affiliated to the Bacteroidetes and Firmicutes are dominant, whilst sequence binning methods facilitated the assemblage of metagenomic sequence for a dominant and novel Bacteroidales clade (SRM-1). Analysis of unassembled metagenomic sequence as well as metabolic reconstruction of SRM-1 revealed the presence of multiple polysaccharide utilization loci-like systems (PULs) as well as members of more than 20 glycoside hydrolase and other carbohydrate-active enzyme families targeting various polysaccharides including cellulose, xylan and pectin. Functional screening of cloned metagenome fragments revealed high cellulolytic activity and an abundance of PULs that are rich in endoglucanases (GH5) but devoid of other common enzymes thought to be involved in cellulose degradation. Combining these results with known and partly re-evaluated metagenomic data strongly indicates that much like the human distal gut, the digestive system of herbivores harbours high numbers of deeply branched and as-yet uncultured members of the Bacteroidetes that depend on PUL-like systems for plant biomass degradation
    • …
    corecore