87 research outputs found

    Does fish larval dispersal differ between high and low latitudes?

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of The Royal Society for personal use, not for redistribution. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 280 (2013): 20130327, doi:10.1098/rspb.2013.0327.Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions, and evidence. We explore latitudinal differences in: 1) biological (e.g., species composition, spawning mode, pelagic larval duration (PLD)), 2) physical (e.g., water movement, habitat fragmentation), and 3) biophysical factors (primarily temperature, which could strongly affect development, swimming ability, or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature, and larval swimming, and each could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat, and geographic region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of ‘off the shelf’ information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes, as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.TK was supported by the Norwegian Research Council through project MENUII #190286. JML was supported by ARC Discovery Grant DP110100695. JEC and RRW were supported by the Partnership for the Interdisciplinary Study of Coastal Oceans, funded by The David and Lucille Packard Foundation and the Gordon and Betty Moore Foundation.2014-03-2

    The physical oceanography of the transport of floating marine debris

    Get PDF
    Marine plastic debris floating on the ocean surface is a major environmental problem. However, its distribution in the ocean is poorly mapped, and most of the plastic waste estimated to have entered the ocean from land is unaccounted for. Better understanding of how plastic debris is transported from coastal and marine sources is crucial to quantify and close the global inventory of marine plastics, which in turn represents critical information for mitigation or policy strategies. At the same time, plastic is a unique tracer that provides an opportunity to learn more about the physics and dynamics of our ocean across multiple scales, from the Ekman convergence in basin-scale gyres to individual waves in the surfzone. In this review, we comprehensively discuss what is known about the different processes that govern the transport of floating marine plastic debris in both the open ocean and the coastal zones, based on the published literature and referring to insights from neighbouring fields such as oil spill dispersion, marine safety recovery, plankton connectivity, and others. We discuss how measurements of marine plastics (both in situ and in the laboratory), remote sensing, and numerical simulations can elucidate these processes and their interactions across spatio-temporal scales

    HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3ÎČ) a key regulator of glycolysis. Pharmacological inhibition of GSK3ÎČ results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3ÎČ inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC

    Connectivity within and among a Network of Temperate Marine Reserves

    Get PDF
    Networks of marine reserves are increasingly being promoted as a means of conserving marine biodiversity. One consideration in designing systems of marine reserves is the maintenance of connectivity to ensure the long-term persistence and resilience of populations. Knowledge of connectivity, however, is frequently lacking during marine reserve design and establishment. We characterise patterns of genetic connectivity of 3 key species of habitat-forming macroalgae across an established network of temperate marine reserves on the east coast of Australia and the implications for adaptive management and marine reserve design. Connectivity varied greatly among species. Connectivity was high for the subtidal macroalgae Ecklonia radiata and Phyllospora comosa and neither species showed any clear patterns of genetic structuring with geographic distance within or among marine parks. In contrast, connectivity was low for the intertidal, Hormosira banksii, and there was a strong pattern of isolation by distance. Coastal topography and latitude influenced small scale patterns of genetic structure. These results suggest that some species are well served by the current system of marine reserves in place along this temperate coast but it may be warranted to revisit protection of intertidal habitats to ensure the long-term persistence of important habitat-forming macroalgae. Adaptively managing marine reserve design to maintain connectivity may ensure the long-term persistence and resilience of marine habitats and the biodiversity they support

    Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas

    Get PDF
    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    TIDAL PERIODICITY IN THE DAILY SETTLEMENT OF INTERTIDAL BARNACLE LARVAE AND AN HYPOTHESIZED MECHANISM FOR THE CROSS-SHELF TRANSPORT OF CYPRIDS

    No full text
    Volume: 170Start Page: 429End Page: 44

    Testing the intermittent upwelling hypothesis: reply.

    No full text
    • 

    corecore