879 research outputs found

    LINGULIFORM MICROBRACHIOPODS FROM LAS AGUADITAS AND LAS CHACRITAS FORMATIONS (MIDDLE-UPPER ORDOVICIAN) OF ARGENTINE PRECORDILLERA

    Get PDF
    Middle-Upper Ordovician linguliform microbrachiopods are described and illustrated for the first time from the Las Aguaditas Formation at the Los Blanquitos and Mogotes Azules ranges and from the Las Chacritas Formation at the Las Chacritas River section, Central Argentine Precordillera. This systematic study includes nine families, namely Obolidae, Paterulidae, Discinidae, Acrotretidae, Scaphelasmatidae, Torynelasmatidae, Ephippelasmatidae, Biernatidae and Eoconulidae. This diverse fauna is conformed of specimens corresponding to Lingulops sp., Paterula incognita Mergl, Schizotreta sp., Scaphelasma zharykensis Popov, Torynelasma? sp., Akmolina sp., Ephippelasma sp., Numericoma simplex Holmer, and Eoconulus sp. However, specimens from the order Acrotretida proved to be an important component of this fauna, enabling the recognition of two new species which are thoroughly described, Conotreta andina n. sp. and Biernatia rhapsody n. sp

    Solar radiation and architectural design in Barcelona

    Get PDF
    The principles of the passive solar house were defined in the 1970s. Since that time, strategies have been conceptualized and tested with different examples built in the USA and in Europe. Models directly related to the Mediterranean climate are rare in this context. They will be the subject of the present study. In these cases, the main issue is to reconcile solar gain in winter and solar shading protection in summer. In addition, summer heat can be lost through natural ventilation. The research will focus on aspects of architectural design to implement alternatives for optimizing control of radiation. The Heliodon 2TM computer software will be used to establish evaluation methods for certifying the energy efficiency of the solutions under study.Peer ReviewedPostprint (published version

    Luminances and vision related to daylighting

    Get PDF
    Daylighting has an excellent color rendering, as human eyes have been developed under the sun’s rays, and it yields very proactive elements to human behavior. In the field of luminance contrast, it has been noted that the probability of excessive contrast is lower when considering daylighting in relation to artificial lighting. As a result, in activities which require more demanding visual accuracy, daylighting can offer more and better conditions for light and space variations considering the wide range of the field of vision. This paper proposes a new approach to the methodology of calculating luminance balances considering the surface position in space and its relative weight in the final mean luminance value. This is based on ergonomic field of vision distribution, which confers major importance on what is in the solid angle analyzed by the cones area of the eye. The starting point when constructing numerical models of lighting comfort is the human eye’s sensitivity to light. Assessing interior architectural visual comfort conditions is the ultimate purpose of this work, along with the possibility of taking advantage of photography-related software programs that could be useful tools for architects and interior designers. Avoiding uncomfortable visual situations is an environmentally efficient approach because the end effect of poor visual conditions is a higher demand for artificial lighting, leading to energy consumption that could be saved with lighting conditions adapted to human comfort.Peer ReviewedPostprint (published version

    Tectonic evolution, geomorphology and influence of bottom currents along a large submarine canyon system: The São Vicente Canyon (SW Iberian margin)

    Get PDF
    A multi-scale dataset consisting of multi-beam echo-sounder, 2D multi-channel seismic and sidescan sonar (TOBI) data allows us to identify a large variety of morphologies originating from sedimentary and tectonic processes along the São Vicente Canyon (SVC), which is the largest submarine canyon developed in the external part of the Gulf of Cadiz. The SVC is located in one of the most seismogenic areas of Western Europe. The convergence between the Eurasian and African plates has controlled the formation and evolution of the canyon. The SVC is tectonically controlled by three main thrust faults: the Marquês de Pombal Fault, the São Vicente Fault and the Horseshoe Fault. No major rivers feed sediment to the canyon head, but the main sediment source is related to the dismantling of canyon flanks and the MOW (Mediterranean Overflow Water). This current contributes sediments by two different processes: a) conturites deposition at the head and flanks of the SVC that periodically fail into the canyon; and b) the coarser-grained and denser sediment of the MOW might be trapped at the head of the canyon and could develops into hyperpycnal flows. The SVC is characterized by retrogressive erosion being submarine landslide deposits and scars the main seafloor morphologies. The tectonic and stratigraphic interpretation of seismic profiles indicate that the SVC is a clear example of a diachronous and segmented canyon developed since the Late Miocene in an area of present-day active plate tectonics. This study investigates the interaction between active tectonics, the dynamics of submarine canyons and the resulting geomorphologies

    Oxygen: A Fundamental Property Regulating Pelagic Ecosystem Structure in the Coastal Southeastern Tropical Pacific

    Get PDF
    Background: In the southeastern tropical Pacific anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance have recently fluctuated on multidecadal scales and food and temperature have been proposed as the key parameters explaining these changes. However, ecological and paleoecological studies, and the fact that anchovies and sardines are favored differently in other regions, raise questions about the role of temperature. Here we investigate the role of oxygen in structuring fish populations in the Peruvian upwelling ecosystem that has evolved over anoxic conditions and is one of the world's most productive ecosystems in terms of forage fish. This study is particularly relevant given that the distribution of oxygen in the ocean is changing with uncertain consequences. Methodology/Principal Findings: A comprehensive data set is used to show how oxygen concentration and oxycline depth affect the abundance and distribution of pelagic fish. We show that the effects of oxygen on anchovy and sardine are opposite. Anchovy flourishes under relatively low oxygen conditions while sardine avoid periods/areas with low oxygen concentration and restricted habitat. Oxygen consumption, trophic structure and habitat compression play a fundamental role in fish dynamics in this important ecosystem. Conclusions/Significance: For the ocean off Peru we suggest that a key process, the need to breathe, has been neglected previously. Inclusion of this missing piece allows the development of a comprehensive conceptual model of pelagic fish populations and change in an ocean ecosystem impacted by low oxygen. Should current trends in oxygen in the ocean continue similar effects may be evident in other coastal upwelling ecosystems

    Skipper-CCD Sensors for the Oscura Experiment: Requirements and Preliminary Tests

    Full text link
    Oscura is a proposed multi-kg skipper-CCD experiment designed for a dark matter (DM) direct detection search that will reach unprecedented sensitivity to sub-GeV DM-electron interactions with its 10 kg detector array. Oscura is planning to operate at SNOLAB with 2070 m overburden, and aims to reach a background goal of less than one event in each electron bin in the 2-10 electron ionization-signal region for the full 30 kg-year exposure, with a radiation background rate of 0.01 dru. In order to achieve this goal, Oscura must address each potential source of background events, including instrumental backgrounds. In this work, we discuss the main instrumental background sources and the strategy to control them, establishing a set of constraints on the sensors' performance parameters. We present results from the tests of the first fabricated Oscura prototype sensors, evaluate their performance in the context of the established constraints and estimate the Oscura instrumental background based on these results

    Early Science with the Oscura Integration Test

    Full text link
    Oscura is a planned light-dark matter search experiment using Skipper-CCDs with a total active mass of 10 kg. As part of the detector development, the collaboration plans to build the Oscura Integration Test (OIT), an engineering test experiment with 10% of the Oscura's total mass. Here we discuss the early science opportunities with the OIT to search for millicharged particles (mCPs) using the NuMI beam at Fermilab. mCPs would be produced at low energies through photon-mediated processes from decays of scalar, pseudoscalar, and vector mesons, or direct Drell-Yan productions. Estimates show that the OIT would be a world-leading probe for low-mass mCPs.Comment: 21 pages, 13 figure

    Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk

    Get PDF
    Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer
    corecore