17 research outputs found

    Measurement of the inclusive isolated-photon cross section in pp collisions at √s = 13 TeV using 36 fb−1 of ATLAS data

    Get PDF
    The differential cross section for isolated-photon production in pp collisions is measured at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 36.1 fb. The differential cross section is presented as a function of the photon transverse energy in different regions of photon pseudorapidity. The differential cross section as a function of the absolute value of the photon pseudorapidity is also presented in different regions of photon transverse energy. Next-to-leading-order QCD calculations from Jetphox and Sherpa as well as next-to-next-to-leading-order QCD calculations from Nnlojet are compared with the measurement, using several parameterisations of the proton parton distribution functions. The predictions provide a good description of the data within the experimental and theoretical uncertainties. [Figure not available: see fulltext.

    A Place to Call Home: Bioengineering Pluripotential Stem Cell Cultures

    No full text

    Search for dark matter in association with an energetic photon in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract: A search for dark matter is conducted in final states containing a photon and missing transverse momentum in proton-proton collisions at s = 13 TeV. The data, collected during 2015–2018 by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 fb−1. No deviations from the predictions of the Standard Model are observed and 95% confidence-level upper limits between 2.45 fb and 0.5 fb are set on the visible cross section for contributions from physics beyond the Standard Model, in different ranges of the missing transverse momentum. The results are interpreted as 95% confidence-level limits in models where weakly interacting dark-matter candidates are pair-produced via an s-channel axial-vector or vector mediator. Dark-matter candidates with masses up to 415 (580) GeV are excluded for axial-vector (vector) mediators, while the maximum excluded mass of the mediator is 1460 (1470) GeV. In addition, the results are expressed in terms of 95% confidence-level limits on the parameters of a model with an axion-like particle produced in association with a photon, and are used to constrain the coupling gaZγ of an axion-like particle to the electroweak gauge bosons

    Electromagnetic processes with quasireal photons in Pb plus Pb collisions: QED, QCD, and the QGP

    Get PDF
    Electromagnetic processes, both photon-photon and photon-nucleus, are shown to be useful in studying aspects of QED, QCD, and potentially the QGP. Using lead-lead collisions at root s(NN) = 5.02 TeV, the ATLAS detector has performed measurements of exclusive dimuon production, light-by-light scattering (via exclusive diphoton production), and photo-nuclear dijet production. These are all important examples of ultraperipheral collisions, where the nuclei do not interact hadronically. A recent study of the opening angles of dimuons produced in hadronic heavy-ion collisions, after subtracting heavy-flavor backgrounds, demonstrates that the dimuons carry information correlated with the overlap geometry, potentially about the density of charges in the QGP itself.<p>For complete list of authors see http://dx.doi.org/10.1016/j.nuclphysa.2018.10.087</p

    Test of the universality of τ\tau and μ\mu lepton couplings in WW-boson decays with the ATLAS detector

    No full text
    The standard model of particle physics encapsulates our best current understanding of physics at the smallest scales. A fundamental axiom of this theory is the universality of the couplings of the different generations of leptons to the electroweak gauge bosons. The measurement of the ratio of the decay rate of W bosons to τ leptons and muons, R(τ/μ), constitutes an important test of this axiom. Using 139 fb1^{−1} of proton–proton collisions recorded with the ATLAS detector at a centre-of-mass energy of 13 TeV, we report a measurement of this quantity from di-leptonic ttt\overline{t} events where the top quarks decay into a W boson and a bottom quark. We can distinguish muons originating from W bosons and those originating from an intermediate τ lepton through the muon transverse impact parameter and differences in the muon transverse momentum spectra. The measured value of R(τ/μ) is 0.992 ± 0.013 [± 0.007(stat) ± 0.011(syst)] and is in agreement with the hypothesis of universal lepton couplings as postulated in the standard model. This is the only such measurement from the Large Hadron Collider, so far, and obtains twice the precision of previous measurements

    Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton-proton collisions at s\sqrt{\mathrm{s}} = 13 TeV

    No full text
    A search for charged Higgs bosons decaying into W±W± or W±Z bosons is performed, involving experimental signatures with two leptons of the same charge, or three or four leptons with a variety of charge combinations, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb1^{−1}. The search is guided by a type-II seesaw model that extends the scalar sector of the Standard Model with a scalar triplet, leading to a phenomenology that includes doubly and singly charged Higgs bosons. Two scenarios are explored, corresponding to the pair production of doubly charged H±± bosons, or the associated production of a doubly charged H±± boson and a singly charged H± boson. No significant deviations from the Standard Model predictions are observed. H±± bosons are excluded at 95% confidence level up to 350 GeV and 230 GeV for the pair and associated production modes, respectively

    Observation of WWW Production in pp Collisions at √s = 13 TeV with the ATLAS Detector

    Get PDF
    This Letter reports the observation of W W W production and a measurement of its cross section using 139     fb − 1 of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from W W W production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive W W W production cross section is measured to be 820 ± 100   ( stat ) ± 80   ( syst )     fb , approximately 2.6 standard deviations from the predicted cross section of 511 ± 18     fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy

    Search for new phenomena in final states with b-jets and missing transverse momentum in s \sqrt{\mathrm{s}} = 13 TeV pp collisions with the ATLAS detector

    No full text
    The results of a search for new phenomena in final states with b-jets and missing transverse momentum using 139 fb1^{−1} of proton-proton data collected at a centre-of-mass energy s \sqrt{\mathrm{s}} = 13 TeV by the ATLAS detector at the LHC are reported. The analysis targets final states produced by the decay of a pair-produced supersymmetric bottom squark into a bottom quark and a stable neutralino. The analysis also seeks evidence for models of pair production of dark matter particles produced through the decay of a generic scalar or pseudoscalar mediator state in association with a pair of bottom quarks, and models of pair production of scalar third-generation down-type leptoquarks. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered by the analysis. Bottom squark masses below 1270 GeV are excluded at 95% confidence level if the neutralino is massless. In the case of nearly mass-degenerate bottom squarks and neutralinos, the use of dedicated secondary-vertex identification techniques permits the exclusion of bottom squarks with masses up to 660 GeV for mass splittings between the squark and the neutralino of 10 GeV. These limits extend substantially beyond the regions of parameter space excluded by similar ATLAS searches performed previously

    Observation of WWWWWW Production in pppp Collisions at s\sqrt s =13  TeV with the ATLAS Detector

    No full text
    International audienceThis Letter reports the observation of WWWWWW production and a measurement of its cross section using 139 fb1^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWWWWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWWWWW production cross section is measured to be 820±100(stat)±80(syst)820 \pm 100\,\text{(stat)} \pm 80\,\text{(syst)} fb, approximately 2.6 standard deviations from the predicted cross section of 511±18511 \pm 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy

    Observation of WWWWWW Production in pppp Collisions at s\sqrt s =13  TeV with the ATLAS Detector

    No full text
    International audienceThis Letter reports the observation of WWWWWW production and a measurement of its cross section using 139 fb1^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWWWWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWWWWW production cross section is measured to be 820±100(stat)±80(syst)820 \pm 100\,\text{(stat)} \pm 80\,\text{(syst)} fb, approximately 2.6 standard deviations from the predicted cross section of 511±18511 \pm 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy
    corecore