11 research outputs found

    Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits

    Get PDF
    The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located nearNEDD4LandSLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (R(g)ranging from 0.11 to 0.76, P-values Author summary Although twin studies have shown that body mass index (BMI) is highly heritable, many common genetic variants involved in the development of BMI have not yet been identified, especially in children. We studied associations of more than 40 million genetic variants with childhood BMI in 61,111 children aged between 2 and 10 years. We identified 25 genetic variants that were associated with childhood BMI. Two of these have not been implicated for BMI previously, located close to the genesNEDD4LandSLC45A3. We also show that the genetic background of childhood BMI overlaps with that of birth weight, adult BMI, waist-to-hip-ratio, diastolic blood pressure, type 2 diabetes, and age at menarche. Our results suggest that the biological processes underlying childhood BMI largely overlap with those underlying adult BMI. However, the overlap is not complete. Additionally, the genetic backgrounds of childhood BMI and other cardio-metabolic phenotypes are overlapping. This may mean that the associations of childhood BMI and later cardio-metabolic outcomes are partially explained by shared genetics, but it could also be explained by the strong association of childhood BMI with adult BMI.Peer reviewe

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia:design, results and future prospects

    Get PDF

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects

    Get PDF
    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.Peer reviewe

    Field trials towards integrating smart houses with the smart grid

    No full text
    \u3cp\u3eTreating homes, offices and commercial buildings as intelligently networked collaborations can contribute to enhancing the efficient use of energy. When smart houses are able to communicate, interact and negotiate with both customers and energy devices in the local grid, the energy consumption can be better adapted to the available energy supply, especially when the proportion of variable renewable generation is high. Several efforts focus on integrating the smart houses and the emerging smart grids. We consider that a highly heterogeneous infrastructure will be in place and no one-size-fits-all solution will prevail. Therefore, we present here our efforts focusing not only on designing a framework that will enable the gluing of various approaches via a service-enabled architecture, but also discuss on the trials of these.\u3c/p\u3

    Field Trials towards Integrating Smart Houses with the Smart Grid

    No full text
    Summary. Treating homes, offices and commercial buildings as intelligently networked collaborations can contribute to enhancing the efficient use of energy. When smart houses are able to communicate, interact and negotiate with both customers and energy devices in the local grid, the energy consumption can be better adapted to the available energy supply, especially when the proportion of variable renewable generation is high. Several efforts focus on integrating the smart houses and the emerging smart grids. We consider that a highly heterogeneous infrastructure will be in place and no one-size-fits-all solution will prevail. Therefore, we present here our efforts focusing not only on designing a framework that will enable the gluing of various approaches via a service-enabled architecture, but also discuss on the trials of these. Key words: smart grid, web service, smart metering

    Monitoring and control for energy efficiency in the smart house

    No full text
    \u3cp\u3eThe high heterogeneity in smart house infrastructures as well as in the smart grid poses several challenges when it comes into developing approaches for energy efficiency. Consequently, several monitoring and control approaches are underway, and although they share the common goal of optimizing energy usage, they are fundamentally different at design and operational level. Therefore, we consider of high importance to investigate if they can be integrated and, more importantly, we provide common services to emerging enterprise applications that seek to hide the existing heterogeneity. We present here our motivation and efforts in bringing together the PowerMatcher, BEMI and the Magic system.\u3c/p\u3
    corecore