71 research outputs found

    Max-plus Modeling of Manufacturing Flow Lines

    Get PDF
    AbstractMax-plus algebra can be used to model manufacturing flow lines using linear state-space-like equations which can be used in analysis and control. This paper presents a method for easy and quick generation of the max-plus equations for manufacturing flow lines of any size or structure. The generated equations can model flow lines with infinite as well as finite buffer sizes.A flow line to be modeled is initially assumed to have infinite buffers for all stations. The line model equations are then generated as a combination of serial and merging stations after identifying the different stages using an adjacency matrix for the flow line. In the generated equations, the dynamics of the system are captured in two matrices that are function of the processing times of the different stations in the line. After generating these equations, extra terms are added to account for the finite buffers where for each buffer size, a matrix is added multiplied by the vector of system parameters delayed by the buffer size plus one.The method is intuitive and easy to understand and code in software and thus can facilitate quick analysis of different configurations of manufacturing flow lines and assessing what if scenarios. This can also allow quick on-line reconfiguration of controllers for frequently reconfiguring flow lines

    Energy-efficient full-range oscillation analysis of parallel-plate electrostatically actuated MEMS resonators

    Get PDF
    This is the peer reviewed version of the following article: “Fargas Marques, A., Costa Castelló, R. (2017) Energy-efficient full-range oscillation analysis of parallel-plate electrostatically actuated MEMS resonators, 1-13.” which has been published in final form at [doi: 10.1007/s11071-017-3633-8]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."Electrostatic parallel-plate actuators are a common way of actuating microelectromechanical systems, both statically and dynamically. Nevertheless, actuation voltages and oscillations are limited by the nonlinearity of the actuator that leads to the pull-in phenomena. This work presents a new approach to obtain the electrostatic parallel-plate actuation voltage, which allows to freely select the desired frequency and amplitude of oscillation. Harmonic Balance analysis is used to determine the needed actuation voltage and to choose the most energy-efficient actuation frequency. Moreover, a new two-sided actuation approach is presented that allows to actuate the device in all the stable range using the Harmonic Balance Voltage.Peer ReviewedPostprint (author's final draft

    Block Shear Capacity of Bolted Connections in Cold-Reduced Steel Sheets

    Get PDF
    This paper examines the mechanisms for block shear failures of bolted connections in steel plates postulated in the design equations specified in the North American, European and Australian steel structures codes. It explains that there is only one feasible mechanism for the limit state of conventional block shear failure, that which involves tensile rupture and shear yielding, irrespective of the steel material ductility. It describes the fundamental shortcomings of various code equations for determining the block shear capacity of a bolted connection. Based on the tensile rupture and shear yielding mechanism, an in-plane shear lag factor, and the active shear resistance planes identified in the present work, this paper proposes a rational equation that is demonstrated to provide more accurate results compared to all the code equations in predicting the block shear capacities of bolted connections in G450 steel sheets subjected to concentric loading. The resistance factor of 0.8 for the proposed equation is computed with respect to the LRFD approach given in the North American specification for the design of cold-formed steel structures

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
    • …
    corecore