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Universitat Politècnica de Catalunya (UPC)

Abstract

Electrostatic parallel-plate actuators are a common way of actuating
microelectromechanical systems, both statically and dynamically. Never-
theless, actuation voltages and oscillations are limited by the nonlinearity
of the actuator that leads to the Pull-in phenomena. This work presents
a new approach to obtain the electrostatic parallel-plate actuation volt-
age, which allows to freely select the desired frequency and amplitude of
oscillation. Harmonic Balance analysis is used to determine the needed
actuation voltage and to choose the most energy efficient actuation fre-
quency. Moreover, a new two-sided actuation approach is presented that
allows to actuate the device in all the stable range using the Harmonic
Balance Voltage.

1 Introduction

Microelectromechanical systems (MEMS) based on the electrostatic parallel-
plate actuation principle are seemingly simple to fabricate and operate (Fig. 1).
For this reason, they are the basic building block for a wide variety of sensors.
The list include accelerometers [31] and gyroscopes [21], temperature sensors
[10], gas sensors [4] and mass sensors [28] among others. The main challenge is
the nonlinearity of the parallel-plate electrostatic force that leads to the Pull-in
phenomena [8].

Several techniques, such as mechanical modifications [17], voltage patterns
[7, 23] or different electrode configurations [18] have been considered to increase
the stable static and dynamic range of actuation of parallel-plate electrostatic
actuators. However, they focus on avoiding the Pull-in problem and, in that
effort, they limit the actuation amplitude and oscillation frequency.

∗This work has been supported by the projects DPI2015-69286-C3-2-R of the Spanish
Ministerio de Educación de España MINECO/FEDER and 2014 SGR 267 of the AGAUR
agency of the Generalitat de Catalunya.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87660677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The use of different frequencies in the actuation of MEMS resonators, and
their effect on the stability and sensor bandwidth has been widely analyzed
in the case of parametric excitation [9, 19, 22]. Lately, new approaches have
focused on the effect of secondary resonance [3], multiple modes of oscillation
and different frequencies [13, 14, 15, 33], or multiple harmonics [20].

Research has shown the beneficial effects of multiple harmonics on the sta-
bility and performance of MEMS resonators. Applying different frequencies to
excite multiple modes of oscillation is shown in [16] to produce large bandwidth
in the resonator response. At the same time, the fact of using the combination
of two different frequency sources allows to tune the bandwidth of the resonator
as desired.

Fixed plate
Moving plate

10 um gap

200 um
Resonator beam

Figure 1: An example of a fabricated beam resonator with parallel-plate elec-
trostatic actuation and sensing. The parameters of this design have been used
for simulations [8].

This paper analyzes the capability of multiple harmonic actuation in order
to improve oscillation performance, while avoiding the pull-in phenomena in
steady state. For the first time, a constructive analytical voltage harmonic
content selection algorithm is derived to freely select the oscillation amplitude
and frequency of the MEMS device.

Moreover, the presented analysis takes into account energy storage, transfer
and power dissipation in oscillatory steady-state response of electrostatically
actuated MEMS structures to finally select the most energy efficient frequency
of oscillation.

This analysis leads to the definition of a new two-sided actuation configu-
ration that allows to actuate a parallel-plate electrostatically actuated MEMS
device at any desired oscillation amplitude and frequency in the stable oscilla-
tion range.

In Section 2, the nonlinear model of the MEMS system is presented and a
concentrated parameters simplification is derived to apply Harmonic Balance.
In Section 3, Harmonic Balance is applied to derive the equilibrium equations
in steady-state oscillation. In Section 4, the Harmonic Balance Voltage is pre-
sented and its capabilities and complexity analyzed. In Section 5, the Harmonic
Balance Voltage energy consumption is analyzed to be able to determine min-
imum energy frequencies. In Section 6, a new two sided actuation approach is
presented to be able to use Harmonic Balance Voltage to freely choose the am-
plitude and frequency of oscillation in all the stable range of oscillations. And
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in Section 7, final conclusions and future work are presented.

2 Nonlinear actuator MEMS model
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Figure 2: Basic scheme of a deflected beam with electrostatic parallel-plate
actuation, which is a schematic representation of most MEMS devices. Using
the Galerkin Method [24], the deformation of a beam is studied as the lumped
mass-spring-damper system in Fig. 3.

Figure 2 shows a schematic beam representation of a parallel-plate electro-
statically actuated MEMS resonator. Most MEMS resonators can be assimilated
to this representation.

Using differential equations to derive mechanical deformations, electrostatic
forces and the damping forces, the dynamics of the system can be reduced to
[1]:

ρA
∂2ŵ

∂t2
+ cd

∂ŵ

∂t
+ E’I

∂4ŵ

∂x̂4

−

[
N̂(t) +

E’A

2L

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂

]
∂2ŵ

∂x̂2
= F̂elec(t) (1)

given the following boundary conditions

ŵ(0, t) = ŵ(L, t) = 0, ŵ′(0, t) = ŵ′(L, t) = 0,

where ŵ(x̂, t) is the oscillation amplitude at position x̂ and time t, N̂(t) is any
axial force applied to the beam, F̂elec(t) is the applied electrostatic force, cd is
the calculated damping constant of the system, ρ is the density of the beam, A
is the area of the cross-section of the beam (A = b · h, b and h are the width
and height of the section of the beam), L is the longitude of the beam, I is the
moment of inertia of the cross-section (I = bh3/12), and E’ = E/(1− ν2) where
E is the Young Modulus and ν is the Poisson ratio.

The Galerkin Method [24] can be used to convert the partial differential
equation, (1), into a single-degree of freedom ordinary differential equation.
This allows to deal with a mass-spring-damper concentrated parameter model
(Fig. 3) with a voltage-controlled actuation. This approach is the most popular
in the literature [5, 6, 12, 25, 26].
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Firstly, the beam response is assumed to be composed of an infinite number
of oscillation modes, and consequently, the displacement ŵ can be decomposed
in

ŵ(x̂, t) =

∞∑
i=0

q̂i(t)φ̂i(x̂) (2)

where q̂i(t) is the time-dependent modal displacement for the oscillation mode

i and φ̂i(x̂) is the position-dependent modal shape.
Equation (2) can be substituted in the previously presented equation (1) to

obtain the dynamics equation for each vibration mode of the beam [24]

Meff,i · ¨̂qi +Beff,i · ˙̂qi +Keff,i · q̂i +K3,eff,i · q̂3i = Feff,i (3)

where the effective mechanical constants for each mode of oscillation are
derived as

Meff,i = ρA

∫ L

0

φ̂2
idx̂ (4)

Keff,i = EI

∫ L

0

(
∂2φ̂i
∂x̂2

)2

dx̂+ N̂(t̂)

∫ L

0

(
∂φ̂i
∂x̂

)2

dx̂ (5)

K3,eff,i =
EA

2L

[∫ L

0

(
∂φ̂i
∂x̂

)2

dx̂

]2
(6)

Beff,i = ĉd

∫ L

0

φ̂2
idx̂. (7)

At the same time, the electrostatic force associated with the actuator capac-
itor is defined as

Feffi =
1

2

C

(1− q̂i(t)
g0

)
V 2, (8)

where C = ε0 Ac

g0

(
1 + 0.65 g0

b

)
is the capacitance at rest using a first-order fring-

ing field correction [11], ε0 is the dielectric constant, g0 is the initial gap between
the plates, b is the device thickness, Ac is the area of the plates, and V is the
applied voltage between the electrodes.

Assuming, as usual, that the system behavior is sufficiently captured by the
first mode of oscillation, the dynamic response of the beam in Fig. 2 can be
modeled by the lumped mass-spring-damper in Fig. 3, given that q̂1(t) ' ŷ(t),
Meff,1 ' M, Keff,1 ' K, K3,eff,i ' K3, Beff,1 ' B and Feff,1 ' F. The
consideration of higher order modes would improve the accuracy of the model,
as shown in [32], but at expense of an increase in the mathematical complexity.

Consequently, the dynamics of the system can be described by

M ¨̂y + B ˙̂y + K ŷ + K3 ŷ
3 =

1

2

C0

g0(1− ŷ
g0

)2
V 2. (9)
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This is the dynamic equation of a mass-spring-damper system with parallel-
plate electrostatic actuation and a nonlinear spring (Fig. 3).
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^

^

Figure 3: Schematics of an electromechanical system with parallel-plate actua-
tion. It includes a linear spring, a nonlinear spring and linear velocity damping.

For the Harmonic Balance formulation, it is best to work with the resulting
normalized actuation gap, g = 1 − ŷ/g0, and once substituted into (9), the
resulting equation is

− d2g

dt2
− ωn

Q

dg

dt
+ ω2

n(1− g) + κ(1− g)3 = fkgk
V 2

g2
(10)

where C0 = εAc

g0
, fk = C0

2g0
, gk = 1

g0M
, B

M = ωn

Q , K
M = ω2

n and κ =
K3g

2
0

M , being

ωn the natural frequency of the system, Q = 1
2ζ the quality factor and ζ the

damping of the system.
Rearranging terms

(
−
(d2g
dt2

+
ωn

Q

dg

dt
+ ω2

ng + κg3
)

+ ω2
n + κ− 3κg + 3κg2

)
g2

= fkgkV
2 (11)

and introducing

H(g) =
d2g

dt2
+
ωn

Q

dg

dt
+ ω2

ng + κg3 (12)

the equation converts to

−H(g)g2 + (ω2
n + κ)g2 − 3κg3 + 3κg4 = fkgkV

2 (13)
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3 Harmonic Balance steady-state characteriza-
tion

Equation (13) establishes the relationship between the position (gap distance
g(t)) and the voltage (actuator driving voltage V (t)). If the system is analyzed
in steady-state oscillation, both variables can be approximated using Fourier
series.

The gap distance can be expressed, in steady state, as

g(t) =

∞∑
n=−∞

Ğne
j nω t (14)

where Ğn ∈ C is the amplitude of the n-th harmonic oscillation in exponential
form.

From equation (14), the velocity and acceleration of the gap, in steady state,
can be computed as

dg(t)

dt
=

∞∑
n=−∞

jnωĞne
jnωt, (15)

d2g(t)

dt2
=

∞∑
n=−∞

−n2ω2Ğne
jnωt. (16)

All the higher order terms of the position are expressed as follow

g(t)2 =

∞∑
n=−∞

αne
jnωt with αn =

∞∑
p=−∞

Ğn−pĞp, (17)

g(t)3 =

∞∑
n=−∞

τne
jnωt with τn =

∞∑
r=−∞

Ğn−rαr, (18)

g(t)4 =

∞∑
n=−∞

δne
jnωt with δn =

∞∑
q=−∞

αn−qαq. (19)

And the H(g) term, defined in (12), becomes

H(g) =

∞∑
n=−∞

Λne
jnωt

where Λn = (−ω2 n2 + j ωn

Q ω n+ ω2
n) Ğn + κτn.

At the same time, the input voltage is assumed to be

V (t) =

∞∑
n=−∞

V̆n e
j nω t (20)
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where V̆n is the n-th harmonic amplitude of the voltage. This implies that the
square of the input is

V (t)2 =

∞∑
n=−∞

βne
jnωt with βn =

∞∑
p=−∞

V̆n−pV̆p (21)

being βn the n-th order amplitude.
Using these definitions on equation (13) and rearranging terms, the complete

system dynamics can be represented as follows

∞∑
n=−∞

(
−

∞∑
q=−∞

Λq αn−q + (ω2
n + κ)αn − 3κτn

+ 3κδn

)
ejnωt =

∞∑
n=−∞

fkgkβne
jnωt (22)

Equation (22) generates the following set of equations to be solved for each
harmonic:

−
∞∑

q=−∞

Λqα−q + (ω2
n + κ)α0 − 3κτ0 + 3κδ0 = fkgkβ0

−
∞∑

q=−∞

Λqα1−q + (ω2
n + κ)α1 − 3κτ1 + 3κδ1 = fkgkβ1

−
∞∑

q=−∞

Λqα−1−q + (ω2
n + κ)α−1 − 3κτ−1 + 3κδ−1 = fkgkβ−1

−
∞∑

q=−∞

Λqα2−q + (ω2
n + κ)α2 − 3κτ2 + 3κδ2 = fkgkβ2

−
∞∑

q=−∞

Λqα−2−q + (ω2
n + κ)α−2 − 3κτ−2 + 3κδ−2 = fkgkβ−2

... for n

These equations define the relationship between the gap oscillation and the
input voltage in steady state. Consequently, given an input voltage the steady-
state oscillation can be predicted. On the other way round, they can also be
used to select the voltage needed for a desired steady-state oscillation. This
voltage has been named as Harmonic Balance Voltage (HBV).
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4 Harmonic Balance Voltage

4.1 Harmonic Balance Voltage definition

The introduction of the HBV allows to change the parallel-plate electrostatic
actuation paradigm in MEMS resonators. The oscillation is not defined by the
voltage, on the contrary, the voltage is fixed by the desired oscillation.

The HBV, VHBV(t), is defined as

VHBV(t)2 =

∞∑
i=0

βi e
j i ω t +

∞∑
i=1

β̄i e
−j i ω t (23)

where β̄i is the complex conjugate of βi and the βi terms are calculated as
follows:

βi=
1

fkgk

(
−
∞∑

q=−∞

Λq αi−q + (ω2
n + κ)αi − 3κτi + 3κδi

)
(24)

Consequently, the complexity of the HBV would depend on the desired os-
cillation and the system parameters. This complexity for most common ap-
proaches is summarized in Table 1. As can be observed, a minimum of four
real-valued equations must be solved in order to obtain β0 to β3 for a perfect si-
nusoidal oscillation if the model does not contain a nonlinear mechanical spring.
On the other side, if the oscillation has up to three harmonics and the model
contains a nonlinear spring, the HBV is composed of β0 up to β15.

Case Needed terms

Linear spring (κ = 0) - 1 harmonic β0 to β3
Linear spring (κ = 0) - 2 harmonics β0 to β6
Linear spring (κ = 0) - 3 harmonics β0 to β9

Nonlinear spring (κ 6= 0) - 1 harmonic β0 to β5
Nonlinear spring (κ 6= 0) - 2 harmonics β0 to β10
Nonlinear spring (κ 6= 0) - 3 harmonics β0 to β15

Table 1: Summary of usual system models and desired oscillation patterns, with
their corresponding number of harmonics needed in the actuation voltage, based
on HBV calculation.

4.2 Pure sinusoidal oscillation

In most practical device implementations, pure sinusoidal oscillation is desired.
The HBV allows to calculate which is the appropriate actuation voltage that
achieves the desired pure sinusoidal oscillation.

Assuming that the system evolution is a pure sinusoidal, the gap distance,
g, reduces to
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Figure 4: HBV calculation for an oscillation with damping Q = 100 and fre-
quency of 0.96ωn, to obtain a static gap position of G0 = 0.9 and an amplitude
of oscillation of G1 = 0.7. a) Calculated VHBV(t)2 from βi and Equation (23).
b) HBV, VHBV(t), as square-root of a). c) Simulated output of the system,
where it can be observed that it satisfies the desired oscillation.

g(t) = G0 +G1 sin(ωt+ φ1) = Ğ0 + Ğ1e
jωt + Ğ−1e

−jωt

where Ğ0 = G0, Ğ1 = G1

2j e
jφ1 and Ğ−1 = Ğ1 is the conjugate of Ğ1.

Then, the actuation voltage is obtained using (23), and the βi terms, assum-
ing nonlinear mechanical spring are reduced to the following equations(24):
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β0 =
1

fkgk

[
−ω2

nĞ
3
0 + ω2

nĞ
2
0 +

(
4ω2 − 6ω2

n

)
|Ğ1|2Ğ0 + 2ω2

n|Ğ1|2
]

+
κ

fkgk

[
−Ğ5

0 + 3Ğ4
0 − 3Ğ3

0 + Ğ2
0 − 30|Ğ1|4Ğ0 − 20|Ğ1|2Ğ3

0

+36|Ğ1|2Ğ2
0 + 18|Ğ1|4 − 18|Ğ1|2Ğ0 + 2|Ğ1|2

]
β1 =

1

fkgk

[(
3ω2 − j ωn

Q
ω − 3ω2

n

)
|Ğ1|2

+
(
ω2 − j ωn

Q
ω − 3ω2

n

)
Ğ2

0 + 2ω2
nĞ0

]
Ğ1

+
κ

fkgk

[
−10|Ğ1|4 − 30|Ğ1|2Ğ2

0 − 5Ğ4
0 + 36|Ğ1|2Ğ0

+12Ğ3
0 − 9|Ğ1|2 − 9Ğ2

0 + 2Ğ0

]
Ğ1

β2 =
1

fkgk

[(
2ω2 − 2j

ωn

Q
ω − 3ω2

n

)
Ğ0 + ω2

n

]
Ğ2

1

+
κ

fkgk

[
−20|Ğ1|2Ğ0 − 10Ğ3

0 + 12|Ğ1|2 + 18Ğ2
0 − 9Ğ0 + 1

]
Ğ2

1

β3 =
1

fkgk

[
ω2 − j ωn

Q
ω − ω2

n

]
Ğ3

1

+
κ

fkgk

[
−5|Ğ1|2 − 10Ğ2

0 + 12Ğ0 − 3
]
Ğ3

1

β4 =
κ

fkgk

[
−5Ğ0 + 3

]
Ğ4

1

β5 =− κ

fkgk
Ğ5

1

where |Ğn| is the absolute value of Ğn.
For a chosen oscillation amplitude, G0 and G1, these equations provide the

required control action, VHBV(t). An example of the calculated actuation voltage
and the obtained oscillation is shown in Fig. 4. In the presented example, an
static gap displacement of G0 = 0.9 is desired, as well as, an amplitude of
oscillation of G1 = 0.7. These features are imposed for a frequency close to
resonance, 0.96ωn, and medium damping conditions, Q = 100. Equation (23)
allows to determine the HBV, but squared, VHBV(t)2, as shown in Fig. 4a.
From this value, the actual HBV can be derived, VHBV(t), by square-root of the
previous value (Fig. 4b). This value, obtained using numerical fitting tools, can
be used to generate a signal to drive the MEMS resonator. Fig. 4c shows the
simulated oscillation of the MEMS resonator model used in the example (Table
2). As can be seen, the desired static displacement and oscillation amplitude
are obtained.

4.3 Harmonic Balance Voltage complexity

The HBV allows to obtain the desired oscillation amplitude and frequency. How-
ever, that doesn’t mean that it can be easily used to drive a real device. The
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pattern can be complex, and must be converted to a number of voltage signals
ready to be delivered in an actuation set-up.

A first problem arises from HBV analysis. Depending on the desired oscil-
lation, the calculated actuation voltage from the β-equations cannot always be
reproduced as the square of a sinusoidal signal. As can be seen in Fig. 5, the
calculated voltage, VHBV(t)2, takes negative values. This means that the sig-
nal cannot be generated by squaring the input voltage V (t). This leads to the
impossibility to reach the desired oscillation with a classical one-sided voltage
driving scheme.

0 2 4 6 8 10 12 14 16

x 10
-4

 -400

 -350

 -300

 -250

 -200

 -150

 -100

 -50

0

50

100

Time(s)

V
2

Negative valued

Figure 5: HBV calculation (VHBV(t)2) for an oscillation with medium damping,
Q = 100, and low frequency, 0.8ωn. It is desired to obtain a static gap position
of G0 = 0.9 and an amplitude of oscillation of G1 = 0.7. This voltage is directly
obtained from the βi of the Harmonic Balance equations. As can be observed,
the signal has negative values.

Apart from that limitation, some calculated actuation voltages can also be
difficult to reproduce. No closed-form expression is available to obtain the input
voltage from VHBV(t)2, when it has been calculated. Consequently, the final
driving voltage, VHBV(t), must be obtained by numerically solving the implicit
equations. In that case, the input signal is assumed with a predefined number
of harmonics, in order to solve the equations. In the example in Fig. 6, at least
five harmonics are needed to produce a good numerical solution for the input
voltage, while perfect reproduction is achieved with ten harmonics.

In order to analyze the complexity of the HBV in front of different system
parameters, iterative solutions have been calculated. Presented examples are
based on the device parameters from Table 2. At each step, HBV is approxi-
mated using an rsquare-error minimization technique to determine the minimum
number of harmonics needed to obtain an rsquare-error of unity. The results
are calculated on a square grid with 2 degrees of freedom: X-axis corresponds to
the static displacement (G0) ranging from 0.7 to 1 and the Y-axis corresponds
to the oscillation amplitude (G1) ranging from 0.05 to 0.9.
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Figure 6: Sinusoidal implicit solution of the HBV for an oscillation with damping
Q = 100, a frequency of 0.96ωn, a static gap position of G0 = 0.9 and an
amplitude of oscillation of G1 = 0.7. The solutions obtained (1 to 15 Harmonics)
for the input voltage are compared. In the figure, the 5, 10 and 15 harmonics
solutions are almost overlapped with the calculated VHBV curve. Consequently,
the 5 harmonics solution is already close to the calculated VHBV , and the 10
harmonics solution can be considered almost identical.

Fig. 7 shows the number of harmonics needed to reproduce an input voltage
that obtain the desired oscillation given by the X(G0)-Y(G1) axis. The plots
are obtained for three different frequencies (0.9ωn, 0.96ωn, ωn). The plots show
the effect of selected frequency on the desired input voltage and the number
of harmonics needed to reproduce it. Same tests have been carried on for dif-
ferent damping values, but they have small effect on the voltage pattern and
complexity.

In the plots, the region on the right (red zone) indicates that the voltage
solution calculated by the harmonic balance equations is not completely positive-
valued, and consequently, the zone cannot be reached by one-sided voltage ac-
tuation (Fig. 5). The region on top (brown zone) is the area that cannot be
achieved due to the fact that the total amplitude is greater than the physical
gap. The orange areas indicate that with 10 harmonics the calculated input
voltage is not satisfactorily generated.

The plots analysis shows that with frequencies closer to natural frequency
(between 0.96ωn and ωn), it is easier to obtain a pure sinusoidal oscillation: the
range of obtainable oscillations is wider, and large amplitudes can be achieved
with few harmonics in the input. When the desired frequencies are further
away (0.9ωn and below), the range of achievable oscillations diminishes and the
difficulty to calculate the input voltage increases, as observed by the increase of
orange zones.

Based on the plots analysis, the number of required harmonics changes fol-
lowing a similar pattern when the amplitude is swept. With five or six har-
monics, most of the range can be accessed, but higher harmonics are needed to
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Parameter Value
K 13.406 N/m
K3 3.768 · 1010 N/m3

M 5.6 · 10−7 Kg
g0 5 · 10−6 m
Ac 3.86 · 10−7 m2

ε 8.85 · 10−10

C0 6.83 · 10−13 F
ωn 4892 rad/s
fn 0.78 kHz

β − factor = K/(K3 g20) 14.23

Table 2: MEMS resonator parameters of the fabricated design in Fig. 1, used
for the simulations.

reach larger amplitudes.

4.3.1 Voltage generation limitations

HBV patterns are complex depending on the desired oscillation parameters.
Classical single harmonic driving voltages cannot generate those HBV patterns.
That means that single harmonic driving schemes are limited on the selection
of the desired output. Moreover, due to the nature of the electrostatic field
generated in the parallel-plate capacitor, βi terms are obtained by squaring the
applied voltage. This condition adds more limitations to the achievable patterns
in the driving force.

To understand the limitations in the generation of the driving voltage, a
general case is analyzed including a large number of harmonics. If five harmonics
are assumed in the driving voltage, it would be

V (t) = V̆0 + V̆1e
jωt + V̆−1e

−jωt + V̆2e
2jωt + V̆−2e

−2jωt

+ V̆3e
3jωt + V̆−3e

−3jωt + V̆4e
4jωt + V̆−4e

−4jωt

+ V̆5e
5jωt + V̆−5e

−5jωt, (25)

where V̆0 = V0, V̆i = −j Vi

2 e
jφi and V̆−i = j Vi

2 e
−jφi , being Vi the applied voltage

for each harmonic.
Using these parameters definitions and equation (21), the β-terms are cal-

culated as follows
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β0 = V 2
0 +

V 2
1

2
+
V 2
2

2
+
V 2
3

2
+
V 2
4

2
+
V 2
5

2

β1 = −jV0V1e
jφ1 +

V1V2

2
ej(φ2−φ1) +

V2V3

2
ej(φ3−φ2)

+
V3V4

2
ej(φ4−φ3) +

V4V5

2
ej(φ5−φ4)

β2 = −V
2
1

4
e2jφ1 − jV0V2 e

jφ2 +
V1V3

2
ej(φ3−φ1)

+
V2V4

2
ej(φ4−φ2) +

V3V5

2
ej(φ5−φ3)

β3 = −V1V2

2
ej(φ2+φ1) − jV0V3 e

jφ3 +
V1V4

2
ej(φ4−φ1)

+
V2V5

2
ej(φ5−φ2)

β4 = −V
2
2

4
e2jφ2 − V1V3

2
ej(φ3+φ1) − jV0V4 e

jφ4

+
V1V5

2
ej(φ5−φ1)

β5 = −V2V3

2
ej(φ3+φ2) − V1V4

2
ej(φ4+φ1) − jV0V5 e

jφ5

β6 = −V
2
3

4
e2jφ3 − V2V4

2
ej(φ4+φ2) − V1V5

2
ej(φ5+φ1)

β7 = −V2V5

2
ej(φ5+φ2) − V3V4

2
ej(φ4+φ3)

β8 = −V
2
4

4
e2jφ4 − V3V5

2
ej(φ5+φ3)

β9 = −V4V5

2
ej(φ5+φ4)

β10 = −V
2
5

4
e2jφ5

βi = 0 for i ≥ 11 and β−i = βi for i.

Analyzing the equations, an important conclusion is reached. Using only the
first harmonic frequency in the input voltage, V1, one can generate up to the β2
term. If the input voltage has a second harmonic term, V2, one can generate up
to the β4 term. And if the input voltage has up to the fifth harmonic term, V5,
one can generate up to the β10 term. This relationship can be extended to any
input harmonic frequency term.

The number of βi terms that can be produced squaring the input voltage can
be compared with the previously derived number of harmonics needed from the
HBV calculation, in Table 1. Table 3 shows that only the sets of equations of the
Linear and Non-linear harmonic balance approximations with two harmonics in
the output are completely well-defined with a voltage control. In these cases,
it is possible to produce the needed βi, for the whole set of equations. In the
linear case, up to the third harmonic is needed in the input voltage, V3, and in
the nonlinear case, up to the fifth harmonic is needed in the input voltage, V5.
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In the rest of the cases, the mathematical equations are unbalanced, meaning
that it is not possible to perfectly generate the right βi for the needed oscilla-
tion and model. At this point, it is important to notice that a perfect sinusoidal
oscillation is not mathematically possible with the available voltage actuation.
On real world, almost perfect sinusoidal oscillation is possible because in the
second harmonic oscillation case, which is well-defined, the amplitude of oscil-
lation of the second harmonic can be chosen extremely small (G2 ' 0), what
leads to almost pure sinusoidal actuation. And this implies that the Vi-terms
of the actuation voltage cancel out to leave only significant β0 to β5 terms for
the nonlinear spring case.

Case HBV Terms Voltage terms

Linear spring β0 to β3 don’t match
1 harmonic

Linear spring β0 to β6 V0, V1, V2, V3
2 harmonics
Linear spring β0 to β9 don’t match
3 harmonics

Nonlinear spring β0 to β5 don’t match
1 harmonic

Nonlinear spring β0 to β10 V0, V1, V2, V3, V4, V5
2 harmonics

Nonlinear spring β0 to β15 don’t match
3 harmonics

Table 3: Comparison of the number of harmonic components needed in the HBV
calculation, based on Table 1, and the terms that can be obtained by squaring
the input voltage with one-sided actuation.

5 Minimum energy consumption

With HBV, the focus has been moved from choosing a voltage to selecting an
oscillation amplitude and frequency. The next step is to find the minimum
energy frequency for the selected amplitude. This frequency is equivalent to
the resonance frequency in the linear case. However, in the nonlinear case, this
minimum energy frequency depends on the selected amplitude and static bias.

The voltage magnitudes of the HBV give an indication of the maximum
electrical load that must be applied, but they provide no insight on the energy
consumption needed to sustain oscillation. Moreover, the needed voltage pattern
can be really complex, and in those cases, the voltage magnitudes only capture
the range of fluctuation of the signal but not its complexity.

The goal is to obtain the cheapest oscillation in energy consumption terms.
In order to evaluate the HBV energy consumption, the actual voltage driv-
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ing scheme including the voltage source must be analyzed (Fig. 8). In this
set-up, the voltage source charges and discharges the driving capacitor (elec-
trostatic transducer) with a series inductor and resistance, which is coupled to
a mechanical load that moves due to the force generated by the electrostatic
transducer [29].

The energy fed into the system by the voltage source is transformed into
electrostatic potential energy by the capacitor, and this energy is converted into
kinetic energy and mechanical potential energy during the oscillation. A MEMS
resonator excited at resonance by an ideal voltage source would oscillate by
itself if no mechanical dissipation would exist. However, this is not true in most
cases. In real applications, the voltage source is not ideal, it compensates the
damping losses and forces the oscillation at the driving frequency. Consequently,
continuous energy supply exists, and the goal is to minimize it.

Introducing the voltage source as an active part in the circuit, as indicated
in Fig. 8, the complete energy equation is as follows:

E(t) =
1

2
M ˙̂y(t)2 +

1

2
Kŷ(t)2 +

1

4
K3ŷ(t)4

+
1

2C(t)
q(t)2 +

1

2
Lvsq̇

2 (26)

where q(t) is the charge accumulated in the capacitor, the capacitor capacitance
is, as expected, C(t) = C0

(1− ŷ(t)
g0

)
and Lsv is the voltage source inductance, if

present.
The interest is on how the energy is exchanged in the system, what implies

studying the energy variation

d

dt
E(t) = M¨̂y(t) ˙̂y(t) + Kŷ(t) ˙̂y(t) + K3ŷ(t)3 ˙̂y(t)

− 1

2C(t)2
∂C(t)

∂ŷ(t)
˙̂y(t)q(t)2 +

1

C(t)
q(t)q̇(t) + Lvsq̇(t)q̈(t)

where q̇(t) is the time derivative of the charge.
Using the dynamic equations of the coupled system (Fig. 8), obtained via

Lagrange formulation

M¨̂y(t) + B ˙̂y(t) + Kŷ(t) + K3ŷ(t)3 =

∂C(t)
∂ŷ(t)

2C(t)2
q(t)2 (27)

Lvsq̈(t) +
1

C(t)q(t)
+ Rvsq̇(t) = Vvs(t) (28)

and rearranging the terms in the energy variation equation

d

dt
E(t) =

(
M¨̂y(t) + Kŷ(t) + K3ŷ(t)3 − 1

2C(t)2
∂C(t)

∂ŷ(t)
q(t)2

)
˙̂y(t)

+ q̇(t)

(
1

C(t)
q(t) + Lvsq̈(t)

)
,

16



the energy variation reduces to

d

dt
E(t) = −B ˙̂y(t)2 − Rvsq̇(t)

2 + q̇(t)Vvs(t). (29)

And substituting the charge by the voltage and current equivalence

q(t) = C(t)V (t) , q̇ = Ivs(t)

the final formulation is obtained

d

dt
E(t) = −B ˙̂y(t)2 − RvsIvs(t)

2 + Vvs(t)Ivs(t). (30)

The energy variation has a part that corresponds to the energy mechanically
dissipated in the damper (B), a part that is electrically dissipated in the voltage
source and system resistance (Rvs) and another part that corresponds to the
power supplied by the voltage source (Vvs(t)Ivs(t)).

Assuming steady-state oscillation, the energy balance in one oscillation cycle
(Tc = 2π

ω ) must be zero, then from equation (30), we obtain

1

Tc

∫ Tc

0

d

dt
E(t)dt = 0 = − 1

Tc

∫ Tc

0

B ˙̂y(t)2dt

− 1

Tc

∫ Tc

0

RvsIvs(t)
2dt+

1

Tc

∫ Tc

0

Vvs(t)Ivs(t)dt (31)

and from this equation, the energy provided by the voltage source can be
isolated as

1

Tc

∫ Tc

0

Vvs(t)Ivs(t)dt =

1

Tc

∫ Tc

0

B ˙̂y(t)2dt+
1

Tc

∫ Tc

0

RvsIvs(t)
2dt (32)

meaning that the voltage source is used to compensate, as expected, two energy
losses: the damping of the system and the source/circuitry losses. If we could
assume that the source is ideal, all the losses would be due to the damping
of the MEMS resonator. And if the MEMS resonator could have no damping,
then, the voltage source would have zero energy balance, as the current delivered
during the charging of the capacitor would be returned during discharging.

However, in real applications the losses exist, and as the goal is to optimize
the energy consumption for sinusoidal oscillation, the actual energy losses in an
oscillation cycle must be calculated. If the oscillation is fixed to be a perfect
sinusoidal

ŷ(t) = Ŷ0 + Ŷ1 sin(ωt) (33)

˙̂y(t) = Ŷ1ω cos(ωt), (34)
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the electrical energy consumed by the voltage source is given by (32), where the
mechanical part can be solved leaving

Elosses =
1

Tc

∫ Tc

0

Vvs(t)Ivs(t)dt =
Mωn

2Q
Ŷ 2
1 ω

2

+
1

Tc

∫ Tc

0

RvsIvs(t)
2dt. (35)

Consequently, the energy consumed has two terms. The first term is pro-
portional to the square of the oscillation frequency, proportional to the square
of the amplitude of oscillation and inversely proportional to the Quality factor.
And the other one is dependant on the dissipated power in the voltage source
resistor and circuitry.

As HBV is known, and consequently Ivs = d(C(t)V (t))
dt , the estimated energy

consumption for each driving scheme can be calculated and compared.
Fig. 9 shows that the damping losses vary a lot due to the Quality factor

and the amplitude of oscillation. Once those parameters are chosen, the energy
variation is not large, for the usual range of frequencies. In the example, the
range of frequencies varies from 0.8ωn to 1.2ωn, the Quality-factor ranges from
10 to 1000000 and the amplitude of oscillation is fixed at 0.4g0 and 0.7g0. As
expected, the damping losses are lower at low amplitudes and low frequencies.

In comparison, the electrical losses are only slightly affected by the Quality
factor, and have a strong dependency on the frequency and amplitude of oscil-
lation. Fig. 10a shows the electrical losses for an amplitude of 0.7g0, a static
bias of 0.95g0 and a Quality factor ranging from 100 to 1000000. In the plot,
the three energy curves are almost overlapped. As can be observed, the electri-
cal losses define a low-energy frequency, that is associated to the resonant-like
behavior of the nonlinear system.

Fig. 10b compares the electrical and mechanical losses in an example. The
total resistance is assumed to be 1 kΩ. As can be seen, for this value, damping
losses are similar to electrical losses in high-vacuum conditions (Q = 1000000).
Combination of both energy losses defines a low energy frequency, that is not
exactly the same that can be obtained from the electrical losses.

Fig. 11a shows the steady-state electrical energy consumption calculation
for amplitudes from 0.3g0 to 0.8g0, for an oscillation with a Quality factor of 100
and static bias of 0.95g0. As amplitude increases, energy consumption increases,
as expected. But at the same time, the frequency range with one-sided actuation
decreases and the minimum oscillation frequency shifts to natural frequency and
far beyond. This leads to an unexpected conclusion. In some cases, frequencies
higher than natural frequency can lead to more energy efficient system driving.

Fig. 11b shows the same system, but this time the oscillation amplitude is
fixed to 0.4g0, the Quality factor is 100 and the static gap bias is ranged from
0.9 to 0.99. The energy plots show that, for each bias, a different minimum
energy frequency exists again. The variation of the gap bias don’t produce
large frequency variations as in the previous case. There is a limitation, the
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curves show that as the bias is close to the unit (no bias), the range of feasible
frequencies gets reduced, due to the use of one-sided voltage actuation.

As a conclusion, Harmonic Balance allows to choose the minimum energy
consumption frequency of oscillation depending on the desired oscillation. And
as can be seen in the plots, the difference in energy consumption can be rele-
vant. Moreover, Harmonic Balance energy analysis is critical. Depending on the
desired oscillation amplitude, results can lead to unexpected range of energy-
efficient frequencies.

6 Full range oscillation selection

6.1 One-sided actuation limitations

In the literature, most strategies are based on one-sided actuation. Even when
the designed devices have driving electrodes in both sides [2]. This occurs when
the same driving voltage (phase-shifted) is used on both sides, just to increase
the driving force [27].

The HBV shows that the range of oscillations that can be achieved is limited
using this actuation scheme (Red zone in Fig. 7). Moreover, it forces to have
large static displacements in order to increase the amplitude of the oscillation.

The need of two-sided actuation had already been presented in [27], as a
way to guarantee no static displacement. HBV analysis extends that result and
highlights the limitations introduced by one-sided actuation in order to select
the frequency, static displacement and amplitude of oscillation.

Consequently, to be able to use the full capability of the HBV, two-sided
actuation must be implemented.

6.2 Harmonic Balance Voltage two-sided actuation

A new two-sided actuation approach is presented to overcome the limitation of
one-sided actuation, and being able to use HBV to freely choose the oscillation
in the whole feasible range. The approach is based on understanding the force
that must be generated by the V 2 action, instead of trying to generate the
needed voltage. If the device, instead of being actuated just by one side as Fig.
12, is actuated by two opposite sides, Fig. 13, the total force can be reproduced
in all cases, even when VHBV(t)2 is negative-valued. Consequently, it is needed
to have a two-sided actuator in the MEMS device to overcome the problem,
splitting the needed voltage between the actuators and generating the desired
driving force into the MEMS resonator.

The desired actuation force has the following form:

F =
fkgk
g2

V 2. (36)

Assume that V 2 driving voltage can be divided in V 2
+, its positive part, and
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V 2
−, its absolute value negative part, giving place to

V 2 = V 2
+ − V 2

−.

Assume that Vd1 is applied to one side of the MEMS resonator and Vd2 to
the other side. And that the normalized gap in each actuator is g1 = g and
g2 = 2−g. Then, the desired force is divided between actuators in the following
way:

fkgk
g2

V 2 =
fkgk
g21

V 2
d1 −

fkgk
g22

V 2
d2. (37)

The negative signs appears because forces are in opposed directions.
The key is then to select the right values for Vd1 and Vd2 actuation voltages.

The following equations allow to calculate those values

Vd1 =
√
V 2
+ (38)

Vd2 =
g2
√
V 2
−

g1
=

(2− g)
√
V 2
−

g
(39)

and they generate the desired force over the MEMS resonator with two-sided
actuation

fkgk
g2

V 2 =
fkgk
g2

√
V 2
+

2

− fkgk
(2− g)2

 (2− g)
√
V 2
−

g

2

=
fkgk
g2

V 2
+ −

fkgk
g2

V 2
−

=
fkgk
g2

(V 2
+ − V 2

−). (40)

This approach has been successfully tested in the simulations, as can be
shown in Fig. 14.

The new drive approach overcomes the limitations of the one-sided actuation.
HBV two-sided actuation with separated voltage action to each electrode allows
to oscillate any MEMS resonator at any desired amplitude and bias, within
physical constrains.

As shown in Fig. 15, in terms of electrical energy consumption the two-
sided actuation is always more energy demanding. But as has been seen in
the energy analysis, the combination of electrical losses and damping losses can
lead to working points where two-sided actuation can be interesting. Moreover,
the range of feasible frequencies with one-sided actuation becomes very narrow
(Fig. 11) for some desired amplitudes of oscillation. And other amplitudes are
not even achievable, what leads to the necessity of two-sided actuation.
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The use of HBV two-sided actuation allows smooth operation of the res-
onator in a large range of amplitudes and frequencies. This opens a new area
of research to develop new control algorithms for the stable oscillation of the
MEMS resonators.

The main drawback of two-sided actuation is that real-time position feedback
is needed in order to generate the appropriate actuation voltage. However,
this can be overcome with known techniques as Electromechanical Amplitude
Modulation (EAM) [30].

7 Conclusions

The typical use of a sinusoidal driving voltage signal with only the first harmonic
always generates outputs with first and second harmonic components, due to
the nonlinear nature of the parallel-plate electrostatic actuator. The existence
of the V 2 term leads to a nonlinear response, with the possibility of non-pure-
sinusoidal responses. Moreover, the desired static bias and oscillation amplitude
cannot be chosen, as they are fixed by the magnitude of the input voltage.

A perfect sinusoidal output can only be achieved with an input signal with
the appropriate form and number of harmonics. As desired amplitude increases,
the number of needed harmonics also increases. Although a closed-form analyt-
ical solution has not been obtained, the combination of HBV calculations and
the use of numerical solution allows to choose the right input signal to reach
the desired oscillation in most of the available oscillation range. Examples show
the viability under changes of damping and frequency of oscillation.

The use of Harmonic Balance Voltage to choose the desired oscillation am-
plitude and frequency breaks the usual concept of resonant frequency associated
with a fixed sinusoidal driving with a DC load plus and AC load. Now, any
combination of oscillation amplitude and frequency is possible. And for each
amplitude of oscillation a minimum energy frequency can be selected. The only
constrain is the ability to apply the calculated voltage. Some voltages can-
not be generated with one-sided actuation, but this can be achieved using the
introduced HBV two-sided configuration.

Consequently, the introduction of the Harmonic Balance Voltage leads to a
new paradigm on how actuating parallel-plate electrostatically actuated MEMS
resonators.

Two concerns raise from the Harmonic Balance Voltage approach, and must
be addressed in future research. Harmonic Balance Voltage is based on steady-
state oscillation, so transient evolution to reach the desired oscillation must
be appropriately selected to avoid AC pull-in. And HBV should be readily
calculated in order to be applied on a real device.

These concerns lead to the necessity of proposing a new control strategy
where the controller should be able to produce the desired frequency components
for the driving voltage, adapt them to the desired amplitude and bias, and ensure
the stability of the oscillation at minimum energy consumption. All these, while
it should avoid AC pull-in.
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Figure 7: Number of harmonics needed to reproduce HBV using a nonlinear
spring model. Selected damping is Q = 100 and different frequencies are tested:
a) 0.9ωn b) 0.96ωn c) ωn.
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Figure 8: Electrical coupling of the electromechanical system including the volt-
age source, based on [29].

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
1

2

3

4

5

x 10
-9

E
ne

rg
y 

(W
.s

)

 

 

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
1
2
3
4
5

x 10
 -10

E
ne

rg
y 

(W
.s

)

 

 

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
1
2
3
4
5

x 10
 -13

Normalized frequency

E
ne

rg
y 

(W
.s

)

 

 

Q=100   G1=0.4
Q=100   G1=0.7

Q=1000   G1=0.4
Q=1000   G1=0.7

Q=1000000   G1=0.4
Q=1000000   G1=0.7

Figure 9: Energy losses due to mechanical system damping for three different
Quality-factors and two different oscillation amplitudes, for the MEMS res-
onator values in Table 2.
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Figure 10: a) Electrical energy losses for three different Quality-factors, an
oscillation amplitude of 0.7g0 and a static bias of 0.95g0, for the MEMS resonator
values in Table 2. Curves for Q = 1000 and Q = 1000000 are overlapped. b)
Comparison of the magnitude of the electrical losses and the damping losses.
System analyzed for an oscillation amplitude of 0.7g0, a static bias of 0.95g0
and a high-vacuum Quality factor (Q = 1000000).
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Figure 11: Steady-state electrical energy consumption curves based on the cal-
culated HBV for fixed damping at Q = 100. a) The static bias is fixed at
0.95g0, and the desired amplitude of oscillation ranges from 0.3g0 to 0.8g0. b)
The desired amplitude of oscillation is fixed at 0.4g0 and the static bias is varied
between 0.9g0 and 0.99g0.

28



I

VdVvs

Figure 12: Schematic MEMS resonator with one driving port (Vd).
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Figure 13: Schematic MEMS resonator with two driving ports (Vd1 and Vd2).
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Figure 14: HBV generation to oscillate the system with a damping of Q = 100,
at natural frequency, with a static gap position of G0 = 1 and an amplitude of
oscillation of G1 = 0.5. a) VHBV(t)2 b) HBV two-sided voltages Vd1 and Vd2. c)
Resulting simulated gap oscillation with the desired pattern.
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Figure 15: Energy consumption curve adding two-sided range to the HBV one-
sided energy calculation of previous section, for fixed damping at Q = 100.
Amplitude of desired oscillation 0.7g0 with 0.95 gap bias.
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