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Abstract 

Max-plus algebra can be used to model manufacturing flow lines using linear state-space-like equations which can be used in analysis and 
control. This paper presents a method for easy and quick generation of the max-plus equations for manufacturing flow lines of any size or 
structure. The generated equations can model flow lines with infinite as well as finite buffer sizes. 
A flow line to be modeled is initially assumed to have infinite buffers for all stations. The line model equations are then generated as a 
combination of serial and merging stations after identifying the different stages using an adjacency matrix for the flow line. In the generated 
equations, the dynamics of the system are captured in two matrices that are function of the processing times of the different stations in the line. 
After generating these equations, extra terms are added to account for the finite buffers where for each buffer size, a matrix is added multiplied 
by the vector of system parameters delayed by the buffer size plus one. 
The method is intuitive and easy to understand and code in software and thus can facilitate quick analysis of different configurations of 
manufacturing flow lines and assessing what if scenarios. This can also allow quick on-line reconfiguration of controllers for frequently 
reconfiguring flow lines. 
 
© 2014 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of the International Scientific Committee of “The 47th CIRP Conference on Manufacturing 
Systems” in the person of the Conference Chair Professor Hoda ElMaraghy. 
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1. Introduction 

Manufacturing systems fall under the category of 
Discrete Event Dynamic Systems (DEDS). For these 
systems, modelling tools include automata, petri-nets, 
markov-chains, queuing networks, simulation, and max-
plus algebra [1]. Among these models, max-plus algebra is 
the only tool that can model the system using linear 
algebraic equations analogous to conventional state-space 
linear equations [2]. Using these equations, real time 
control as well as parametric system analysis becomes 
possible.  

The use of Max-plus in modelling discrete event systems 
is fairly new starting in 1984 and since then it has been used 
in many applications in manufacturing systems including: 
manufacturing systems modelling [3, 4], performance 

evaluation [5, 6], performance optimization [7], and control 
[8, 9].  

A corner stone in modeling, performance evaluation, 
performance optimization or control of manufacturing 
systems using max-plus algebra is obtaining the equations 
that describe the system. For relatively small and simple 
systems, these equations can be derived easily by hand, 
however; for large and complex systems, obtaining these 
equations is difficult, tedious and time consuming. In this 
paper, a method for easy and quick generation of the max-
plus system equations for flow lines is presented. Flow lines 
studied in this paper are assumed to have deterministic 
processing times and reliable machines. The first 
assumption is realistic for automated systems as well as 
semi-automated systems with palletized material handling 
where the process time variation is much less than the 
processing time and thus can be neglected. The second 
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assumption is also realistic when studying the normal short-
term system operation with the objective of understanding 
and optimizing the system behavior as opposed to studying 
long-term operation with the objective of planning system 
capacity where machines breakdown would have an effect.  

A review of related research is presented in section 2. 
Section 3 presents a review of the basics of max-plus 
algebra; section 4 presents the method for generating the 
max-plus equations and section 5 presents the discussion 
and conclusions. 

2. Related research 

Modeling simple manufacturing systems using max-plus 
algebraic equations is easy and intuitive. The necessary 
conditions for each station to start operating on a job can be 
extracted from the description of the system and then 
written as a combination of addition and maximization 
operations. These equations can then be put together in a 
state-space matrix form, where the system parameters are 
the starting (or finishing) times of operating of the stations, 
and the system matrices are formed of the processing times 
of these stations.  However, as the systems grow in size 
and/or have a complicated structure, generating the model 
equations becomes less intuitive, tedious and time 
consuming. In addition, modeling finite buffers with max-
plus equations is not straight-forward or easy. Several 
papers have been published focusing on facilitating the 
modeling of manufacturing systems using max-plus 
algebra. Doustmohammadi and Kamen [10] presented a 
procedure for direct generation of event-time max-plus 
equations for generalized flow shop manufacturing systems. 
The procedure generates the equations directly only for 
serial flow lines with one station in each stage. In more 
complicated cases, the equations are generated for each 
machine separately, interconnection matrices which 
describe the flow of jobs through the line are derived and 
then the final equations are generated using matrix 
manipulations and several recursions. In addition, the 
procedure is limited to flow shops with infinite buffers. In 
[11], Goto et al. proposed a representation form for 
manufacturing systems that can account for finite buffers by 
adding relations between future starting times of jobs on a 
station and the past starting times for the same station and 
the following one. Imaev and Judd [12] used block 
diagrams which can be interconnected to form a 
manufacturing system model. This approach also assumes 
infinite buffer sizes. 

In summary, the literature is lacking a tool that can 
easily generate max-plus equations for flow lines that are 
complex and contain finite buffers.  

3. Basics of max-plus algebra 

Max-plus algebra is an algebraic structure in which the 
two allowable operations are “maximization” and 
“addition”. In this section an introduction to the basic 
concepts and tools of the max-plus algebra will be 
presented. 

Max-plus algebra is defined over  
where  is the set of real numbers. The two main algebraic 
operations are maximization, denoted by the symbol , and 
addition, denoted by the symbol  where:  

 

The null element of the operation  is  which is equal 
to , and the null element for the operation  is  which 
is equal to . This can by demonstrated by:  

 
 

Similar to traditional algebra, both  and  are 
associative and commutative, and multiplication is left and 
right distributive over addition:  

 
 

Max-Plus algebra can be extended over matrices similar 
to conventional algebra. If  and  are two matrices with 
equal dimension then:  

, 
where . If the number of columns of  is 
equal to the number of rows of  equal to , then: 

, 
where 

 , 
where   is maximization of all the elements of  
over to . 

Through the rest of the paper, the  operator will be 
omitted whenever its use is obvious, thus  
will be written as . 

An equation is the general form: 
     (1) 

where  is an  vector of variables, is an 
vector of inputs,  is an square matrix and is an 

 matrix, has a solution [14]: 
     (2) 

where is defined as: 
. 

A complete detailed description and analysis of the max-
plus algebra can be found in [14] and [15]. 

4. Flow lines modeling  

Modelling will start with a flow line with n serial 
stations, then n different lines merging (assembling) in one 
line, then a general flow line with multiple serial lines with 
multiple merging. Modelling stations with finite buffers 
will then be presented afterwards in section 4.4. 

4.1. Modeling ‘n’ serial stations 

The most common structure of a flow line is a serial 
structure with n processing stations, one input of raw 
material U, and one output of finished products Y as shown 
in fig. 1. Let Uk, Yk, and Xi,k be the time at which the raw 
material is made available to the line, the time at which the 
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finished product leaves the line and the starting time of 
processing on the ith station for the kth job respectively. 

 

Fig. 1 Flow line with n serial stations 

For station 1 to start processing the kth job, the following 
conditions must be fulfilled: 1) raw material for the kth job 
is made available, and 2) the station should have finished 
processing the k-1th job. If t1 is the processing time for 
station 1, then these conditions are translated into the 
following equation: 

(3)
which, in the max-plus algebra, is presented as: 

(4)
Similarly, for any station i the conditions for starting 

processing the kth job are: 1) the kth job has finished 
processing on the i-1th station, and 2) the ith station should 
have finished processing the k-1th job. These are expressed 
in max-plus algebra as:   

(5)
Combining equations (4) and (5) in matrix form yields: 

(6)
where, 

,   

 

, and . 

 

(7)
where: 

, 

 

and   . 

 
From equation (7) it can be deduced that for any station 

i, the starting time for the kth job is equal to: 

(8) 

Equations (7) and (8) can be used to directly generate the 
max-plus equations for serial lines with any number of 
stages.  

The output equation for the line can be written as: 
(9) 

where, . Equation (9) can be used to 
represent the output equation for any line throughout the 
paper as the finishing time for the kth job will always be the 
starting time of operation on the last station plus the 
processing time on that station. 

4.2. Modeling ‘n’ merging lines 

Merging lines are common in assembly flow lines. A 
merging station requires input from more than one station 
or line and delivers one output to the next station. Figure 2 
shows n stations, each with its own input of raw material, 
merging into one station. 

If ti is the processing time for station i, and Ui,k  is the 
time at which raw material is made available for the 1i

th  

station, then equation (4) holds for any station 1i and the 
conditions for station 2 to start processing are: 1) the kth job 
has finished processing on stations 1i (i = 1→n ), and 2) 
station 2 should have finished processing the k-1th job. 

 

 

Fig. 2 Flow line with n merging lines 

Accordingly, the max-plus equations for the system in 
figure 2 can be presented as: 

(10)
where,  

, 

  

,  

 

and .  
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Again following equation (2), equation (10) becomes: 

(11)
where: 

    , 

 

and  . 

 
From equation (11) it can be deduced that for any station 

1i, the starting time for the kth time is equal to: 
(12)

and for station 2, the starting time for the kth time is equal 
to: 

(13) 
 Again, equations (11), (12), and (13) can be used to 

directly generate the max-plus equations for merging lines 
of any number.

4.3. Modeling lines with serial and merging stations 

Typical flow lines include both serial and merging lines. 
In the last two sub-sections it was shown that modeling 
serial and merging lines is easy and intuitive for each type 
by itself, however, when combined, modeling becomes less 
intuitive and as the system grows it becomes tedious and 
difficult.  

In this sub-section, an algorithm is presented for the 
automatic generation of matrices and  for any flow line 
with serial and merging stations. With matrices and 

generated, max-plus equations similar to equations (7) 
and (11) would be available for system analysis and control.  

 Step 1: Encode the flow line into an adjacency matrix 
while assuming the line to be a uni-directional graph. 
Figure 3 shows a flow line and its corresponding adjacency 
matrix.   

 

 

Fig. 3 A general flow line and its corresponding adjacency matrix 

Step 2: Re-arrange the rows and columns of the matrix to 
cluster merging stations and identify the different stages in 
the line as shown in figure 4.  

 

Fig. 4 Adjacency matrix and its corresponding flow line diagram after re-
arranging the rows and columns of the matrix 

Step 3: Generate the and  matrices for the identified 
clusters using equations (8), (12), and (13) where stages are 
treated as serial stations and clusters of stations in the same 
stage are treated as merging ones. Assuming the starting 
times of stations in the given example for the kth time is 
given by: , the and  
matrices would be: 

 

 
 

and  . 

4.4. Modeling finite buffers 

To model finite buffers; assume a general station i 
followed by a buffer with a finite buffer size b. For the kth 
job to start on station i an extra condition is added by the 
buffer, which is for station i+1 to have started processing 
the job number k-b-1. Assuming station i mentioned above 
is in a general flow line, then the equations for the line will 
be exactly according to the above sections with the addition 
of one term as follows:  

(14) 
where: 

,   
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Y 0 1 0 0 0 0 0 0
A 1 0 1 0 0 0 1 0
B 0 1 0 1 0 1 0 0
C 0 0 1 0 1 0 0 0
D 0 0 0 1 0 0 0 0
E 0 0 1 0 0 0 0 0
F 0 1 0 0 0 0 0 1
G 0 0 0 0 0 0 1 0
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Y 0 1 0 0 0 0 0 0
A 1 0 1 1 0 0 0 0
B 0 1 0 0 1 1 0 0
F 0 1 0 0 0 0 1 0
E 0 0 1 0 0 0 0 0
C 0 0 1 0 0 0 0 1
G 0 0 0 1 0 0 0 0
D 0 0 0 0 0 1 0 0
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,  

 
where  is a null matrix with only one e located at the ith 
row and the i+1th column.  

To demonstrate, assume a line with four serial machines 
and three buffers as in figure 5. Assume the size of buffers 
1 and 3 is b1 and that of buffer 2 is b2, then the equations for 
the line can be directly generated as: 

 (15)

where  and  are the same as in equation (7), 
 

, and . 

 

Fig. 5 Flow line with 4 serial stations and 3 finite buffers. 

5. Discussion and Conclusions 

A method was developed for quick and easy generation 
of the max-plus equations for flow lines of any size and 
structure, while taking into consideration finite buffer sizes. 
The method is based on the observation that a flow line can 
be decomposed into different ‘features’ each of which 
uniquely affects the final equations. These features can be 
added sequentially to form the final system equations. The 
correctness of all generated equations was verified by 
comparing the results with discrete event simulation models 
equivalent to each of the examples presented in the paper. 
The discrete event simulation software used is FlexSim 
[16].   

Max-plus algebra can be used in modelling, performance 
evaluation and optimization as well as control of 
manufacturing systems. It offers the advantage of 
presenting the system in a parametric form and thus enables 
changing the value of the system parameters to evaluate 
different scenarios using the same set of equations. With the 
help of the method presented in this paper, this advantage is 
extended to different system configurations, where the 
equations for every configuration can be easily and quickly 
generated. The method also facilitates the use of max-plus 
model predictive control [8] and just in time control [9] for 
reconfigurable systems where quick-online generation of 

the system equations is required with every system 
reconfiguration.  

The developed method for generating the Max Plus 
algebra system equations is easy to understand and 
implement in computer software, and thus can be used in 
analysis and control of flow lines.  
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