314 research outputs found

    Deep Sequencing Transcriptome Analysis of Murine Wound Healing: Effects of a Multicomponent, Multitarget Natural Product Therapy-Tr14

    Get PDF
    Wound healing involves an orchestrated response that engages multiple processes, such as hemostasis, cellular migration, extracellular matrix synthesis, and in particular, inflammation. Using a murine model of cutaneous wound repair, the transcriptome was mapped from 12 h to 8 days post-injury, and in response to a multicomponent, multi-target natural product, Tr14. Using single-molecule RNA sequencing (RNA-seq), there were clear temporal changes in known transcripts related to wound healing pathways, and additional novel transcripts of both coding and non-coding genes. Tr14 treatment modulated \u3e100 transcripts related to key wound repair pathways, such as response to wounding, wound contraction, and cytokine response. The results provide the most precise and comprehensive characterization to date of the transcriptome\u27s response to skin damage, repair, and multicomponent natural product therapy. By understanding the wound repair process, and the effects of natural products, it should be possible to intervene more effectively in diseases involving aberrant repair

    Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells

    Get PDF
    Background The function of RNA from the non-coding (the so called “dark matter”) regions of the genome has been a subject of considerable recent debate. Perhaps the most controversy is regarding the function of RNAs found in introns of annotated transcripts, where most of the reads that map outside of exons are usually found. However, it has been reported that the levels of RNA in introns are minor relative to those of the corresponding exons, and that changes in the levels of intronic RNAs correlate tightly with that of adjacent exons. This would suggest that RNAs produced from the vast expanse of intronic space are just pieces of pre-mRNAs or excised introns en route to degradation. Results We present data that challenges the notion that intronic RNAs are mere by-standers in the cell. By performing a highly quantitative RNAseq analysis of transcriptome changes during an inflammation time course, we show that intronic RNAs have a number of features that would be expected from functional, standalone RNA species. We show that there are thousands of introns in the mouse genome that generate RNAs whose overall abundance, which changes throughout the inflammation timecourse, and other properties suggest that they function in yet unknown ways. Conclusions So far, the focus of non-coding RNA discovery has shied away from intronic regions as those were believed to simply encode parts of pre-mRNAs. Results presented here suggest a very different situation – the sequences encoded in the introns appear to harbor a yet unexplored reservoir of novel, functional RNAs. As such, they should not be ignored in surveys of functional transcripts or other genomic studies

    Role of electrostatic interactions in amyloid beta-protein (Abeta) oligomer formation: A discrete molecular dynamics study

    Get PDF
    Pathological folding and oligomer formation of the amyloid beta-protein (Abeta) are widely perceived as central to Alzheimer's disease (AD). Experimental approaches to study Abeta self-assembly are problematic, because most relevant aggregates are quasi-stable and inhomogeneous. We apply a discrete molecular dynamics (DMD) approach combined with a four-bead protein model to study oligomer formation of the amyloid beta-protein (Abeta). We address the differences between the two most common Abeta alloforms, Abeta40 and Abeta42, which oligomerize differently in vitro. We study how the presence of electrostatic interactions (EIs) between pairs of charged amino acids affects Abeta40 and Abeta42 oligomer formation. Our results indicate that EIs promote formation of larger oligomers in both Abeta40 and Abeta42. The Abeta40 size distribution remains unimodal, whereas the Abeta42 distribution is trimodal, as observed experimentally. Abeta42 folded structure is characterized by a turn in the C-terminus that is not present in Abeta40. We show that the same C-terminal region is also responsible for the strongest intermolecular contacts in Abeta42 pentamers and larger oligomers. Our results suggest that this C-terminal region plays a key role in the formation of Abeta42 oligomers and the relative importance of this region increases in the presence of EIs. These results suggest that inhibitors targeting the C-terminal region of Abeta42 oligomers may be able to prevent oligomer formation or structurally modify the assemblies to reduce their toxicity.Comment: Accepted for publication at Biophysical Journa

    Interpersonal interactions for haptic guidance during maximum forward reaching

    Get PDF
    Caregiver-patient interactions rely on interpersonal coordination (IPC) involving the haptic and visual modalities. We investigated in healthy individuals spontaneous IPC during joint maximum forward reaching. A 'contact-provider' (CP; n=2) kept light interpersonal touch (IPT) laterally with the wrist of the extended arm of a forward reaching, blind-folded 'contact-receiver' (CR; n=22). Due to the stance configuration, CP was intrinsically more stable. CR received haptic feedback during forward reaching in two ways: (1) presence of a light object (OBT) at the fingertips, (2) provision of IPT. CP delivered IPT with or without vision or tracked manually with vision but without IPT. CR's variabilities of Centre-of-Pressure velocity (CoP) and wrist velocity, interpersonal cross-correlations and time lags served as outcome variables. OBT presence increased CR's reaching amplitude and reduced postural variability in the reach end-state. CR's variability was lowest when CP applied IPT without vision. OBT decreased the strength of IPC. Correlation time lags indicated that CP retained a predominantly reactive mode with CR taking the lead. When CP had no vision, presumably preventing an effect of visual dominance, OBT presence made a qualitative difference: with OBT absent, CP was leading CR. This observation might indicate a switch in CR's coordinative strategy by attending mainly to CP's haptic 'anchor'. Our paradigm implies that in clinical settings the sensorimotor states of both interacting partners need to be considered. We speculate that haptic guidance by a caregiver is more effective when IPT resembles the only link between both partners

    Reduction of Matrix Metallopeptidase 13 and Promotion of Chondrogenesis by Zeel T in Primary Human Osteoarthritic Chondrocytes

    Full text link
    Objectives: Zeel T (Ze14) is a multicomponent medicinal product. Initial preclinical data suggested a preventive effect on cartilage degradation. Clinical observational studies demonstrated that Ze14 reduced symptoms of osteoarthritis (OA), including stiffness and pain. This study aimed to explore these effects further to better understand the mode of action of Ze14 on human OA chondrocytes in vitro. Methods: Primary chondrocytes were obtained from the knees of 19 OA patients and cultured either as monolayers or in alginate beads. The cultures were treated with 20% or 10% (v/v) Ze14 or placebo. For RNA-seq, reads were generated with Illumina NextSeq5000 sequencer and aligned to the human reference genome (UCSC hg19). Differential expression analysis between Ze14 and placebo was performed in R using the DESeq2 package. Protein quantification by ELISA was performed on selected genes from the culture medium and/or the cellular fractions of primary human OA chondrocyte cultures. Results: In monolayer cultures, Ze14 20% (v/v) significantly modified the expression of 13 genes in OA chondrocytes by at least 10% with an adjusted p-value < 0.05: EGR1, FOS, NR4A1, DUSP1, ZFP36, ZFP36L1, NFKBIZ, and CCN1 were upregulated and ATF7IP, TXNIP, DEPP1, CLEC3A, and MMP13 were downregulated after 24 h Ze14 treatment. Ze14 significantly increased (mean 2.3-fold after 24 h, p = 0.0444 and 72 h, p = 0.0239) the CCN1 protein production in human OA chondrocytes. After 72 h, Ze14 significantly increased type II collagen pro-peptide production by mean 27% (p = 0.0147). For both time points CCN1 production by OA chondrocytes was correlated with aggrecan (r = 0.66, p = 0.0004) and type II collagen pro-peptide (r = 0.64, p = 0.0008) production. In alginate beads cultures, pro-MMP-13 was decreased by Ze14 from day 7–14 (from −16 to −25%, p < 0.05) and from day 17–21 (−22%, p = 0.0331) in comparison to controls. Conclusion: Ze14 significantly modified the expression of DUSP1, DEPP1, ZFP36/ZFP36L1, and CLEC3A, which may reduce MMP13 expression and activation. Protein analysis confirmed that Ze14 significantly reduced the production of pro-MMP-13. As MMP-13 is involved in type II collagen degradation, Ze14 may limit cartilage degradation. Ze14 also promoted extracellular matrix formation arguably through CCN1 production, a growth factor well correlated with type II collagen and aggrecan production

    Selective culture of mitotically active human Schwann cells from adult sural nerves

    Full text link
    We devised a simple method to isolate mitotically active human Schwann cells from sural nerve biopsy specimens and expand the population in culture. Nerve fascicles were treated with cholera toxin for 7 days in culture before dissociation, which increased the cell yield at least twenty-five–fold over immediated tissue dissociation. Digesting the tissue completely with enzymes in serum-containing medium resulted in the highest cell viability, and released 2 to 6 × 10 4 cells/mg of tissue. Seeding the cells on a poly- L -lysine substrate in a small volume of serum-free medium optimized the plating efficiency. Although Schwann cells comprised 90% of the initial culture population, their numbers declined over time due to a faster mitotic rate of the fibroblasts in the presence of cholera toxin alone. However, treating the cultures with a combination of cholera toxin and forskolin, which act synergistically to elevate cyclic AMP levels, inhibited fibroblast growth without causing Schwann cell toxicity. Adding glial growth factor to the adenyl cyclase activators maximized Schwann cell proliferation, and the population rapidly and selectively expanded. Therefore, it should be possible to generate large numbers of Schwann cells from diseased nerves to study defects in cell function or from normal nerves to study the effects of Schwann cell grafts on neuronal regeneration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50351/1/410310603_ftp.pd

    Heterophilic Binding of L1 on Unmyelinated Sensory Axons Mediates Schwann Cell Adhesion and Is Required for Axonal Survival

    Get PDF
    This study investigated the function of the adhesion molecule L1 in unmyelinated fibers of the peripheral nervous system (PNS) by analysis of L1- deficient mice. We demonstrate that L1 is present on axons and Schwann cells of sensory unmyelinated fibers, but only on Schwann cells of sympathetic unmyelinated fibers. In L1-deficient sensory nerves, Schwann cells formed but failed to retain normal axonal ensheathment. L1-deficient mice had reduced sensory function and loss of unmyelinated axons, while sympathetic unmyelinated axons appeared normal. In nerve transplant studies, loss of axonal-L1, but not Schwann cell-L1, reproduced the L1-deficient phenotype. These data establish that heterophilic axonal-L1 interactions mediate adhesion between unmyelinated sensory axons and Schwann cells, stabilize the polarization of Schwann cell surface membranes, and mediate a trophic effect that assures axonal survival

    Thioflavine-T and Congo Red reveal the polymorphism of insulin amyloid fibrils when probed by polarization-resolved fluorescence microscopy.

    No full text
    International audienceAmyloid fibrils are protein misfolding structures that involve a β-sheet structure and are associated with the pathologies of various neurodegenerative diseases. Here we show that Thioflavine-T and Congo Red, two major dyes used to image fibrils by fluorescence assays, can provide deep structural information when probed by means of polarization-resolved fluorescence microscopy. Unlike fluorescence anisotropy or fluorescence detected linear dichroism imaging, this technique allows to retrieve simultaneously both mean orientation and orientation dispersion of the dye, used here as a reporter of the fibril structure. We have observed that insulin amyloid fibrils exhibit a homogeneous behavior over the fibrils' length, confirming their structural uniformity. In addition, these results reveal the existence of various structures among the observed fibrils' population, in spite of a similar aspect when imaged with conventional fluorescence microscopy. This optical nondestructive technique opens perspectives for in vivo structural analyses or high throughput screening

    Spatiotemporal processing of somatosensory stimuli in schizotypy

    Get PDF
    Unusual interaction behaviors and perceptual aberrations, like those occurring in schizotypy and schizophrenia, may in part originate from impaired remapping of environmental stimuli in the body space. Such remapping is contributed by the integration of tactile and proprioceptive information about current body posture with other exteroceptive spatial information. Surprisingly, no study has investigated whether alterations in such remapping occur in psychosis-prone individuals. Four hundred eleven students were screened with respect to schizotypal traits using the Schizotypal Personality Questionnaire. A subgroup of them, classified as low, moderate, and high schizotypes were to perform a temporal order judgment task of tactile stimuli delivered on their hands, with both uncrossed and crossed arms. Results revealed marked differences in touch remapping in the high schizotypes as compared to low and moderate schizotypes. For the first time here we reveal that the remapping of environmental stimuli in the body space, an essential function to demarcate the boundaries between self and external world, is altered in schizotypy. Results are discussed in relation to recent models of 'self-disorders' as due to perceptual incoherence
    corecore