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RESEARCH ARTICLE Open Access

Intronic RNAs constitute the major fraction of the
non-coding RNA in mammalian cells
Georges St Laurent1,2*, Dmitry Shtokalo2,3, Michael R Tackett2, Zhaoqing Yang2, Tatyana Eremina2,
Claes Wahlestedt4, Silvio Urcuqui-Inchima1, Bernd Seilheimer5, Timothy A McCaffrey6 and Philipp Kapranov2*

Abstract

Background: The function of RNA from the non-coding (the so called “dark matter”) regions of the genome has
been a subject of considerable recent debate. Perhaps the most controversy is regarding the function of RNAs
found in introns of annotated transcripts, where most of the reads that map outside of exons are usually found.
However, it has been reported that the levels of RNA in introns are minor relative to those of the corresponding
exons, and that changes in the levels of intronic RNAs correlate tightly with that of adjacent exons. This would
suggest that RNAs produced from the vast expanse of intronic space are just pieces of pre-mRNAs or excised
introns en route to degradation.

Results: We present data that challenges the notion that intronic RNAs are mere by-standers in the cell. By
performing a highly quantitative RNAseq analysis of transcriptome changes during an inflammation time course, we
show that intronic RNAs have a number of features that would be expected from functional, standalone RNA
species. We show that there are thousands of introns in the mouse genome that generate RNAs whose overall
abundance, which changes throughout the inflammation timecourse, and other properties suggest that they
function in yet unknown ways.

Conclusions: So far, the focus of non-coding RNA discovery has shied away from intronic regions as those were
believed to simply encode parts of pre-mRNAs. Results presented here suggest a very different situation – the
sequences encoded in the introns appear to harbor a yet unexplored reservoir of novel, functional RNAs. As such,
they should not be ignored in surveys of functional transcripts or other genomic studies.

Background
Mammalian cells require molecular machineries with suf-
ficient complexity and diversity to acquire, process, and
distribute vast amounts of information. The unique fea-
tures of non-coding RNAs could facilitate key steps in the
information processing activities of hundreds of regulatory
pathways, suggesting a role for them as the major infor-
mational “currency” of the cell [1,2]. The large-scale
efforts that discovered pervasive transcription in mamma-
lian genomes determined that many such transcripts came
from completely un-annotated intergenic and intronic
regions. Often referred to as “dark matter” [3], these non-
coding regions outside of annotated exons produce an

impressive array of transcriptional products that undergo
intricate and complex processing in diverse pathways
[4,5]. While the existence and function of RNAs originat-
ing from this large space of non-coding regions of the
genome has been until recently a subject of considerable
debate [6-9], improved RNA-seq methods have now
established their existence [10] and the recent reports
from the ENCODE consortium leave little doubt as to
their prevalence [11,12]. In fact, single molecule RNA-seq
recently demonstrated that the majority of the mass of a
human cellular pool of RNA comes from non-exonic tran-
scription [10], outweighing protein coding mRNAs, and
underscoring the potential importance of this class of
transcriptional output.
However, the prevalent belief is that these RNAs simply

represent pre-mRNAs en route to splicing or spliced-out
introns en route to degradation. Moreover, it has been
suggested that the levels of RNAs in the intronic regions
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are consistently lower than those in exons and that the
levels of intronic and exonic RNAs highly correlate [9] –
all consistent with a simple notion that pre-mRNAs or
splicing by-products comprise most of the intronic signal,
and arguing against any broad, potentially functional,
stand-alone RNA molecules encoded in these regions.
To gain insight into the functional significance of non-

exonic RNA, we asked whether introns could indeed
harbor functional transcripts in the cell whose features
and physiological behavior differed from that of pre-
mRNAs or spliced out introns. In this report, we present
the results of a global investigation of intronic transcrip-
tion during the mammalian inflammation cascade. The
cascade sets in motion a series of intricate responses to
the perturbation of invading pathogens, using many
interlocking feedback loops to determine the precise na-
ture and extent of the challenge, and carefully regulating
the corresponding pathways to resolution. Thus, it is
expected to require a significant intracellular informa-
tion exchange, where we and others expect non-coding
RNAs to function [13-15] and as such provides a rele-
vant biological model to study the latter. Here we use
single molecule RNA-seq methods, and bioinformatic
analysis adapted to accurately capture RNAs transcribed
from non-exonic regions. We present data that chal-
lenges the notion that intronic RNAs are mere by-
standers in the cell, but rather suggest these they give
rise to RNAs that persist, change in response to inflam-
mation, and are regulated differently from their exonic
counterparts.

Results
Intronic RNAs constitute the major component of the
mammalian transcriptome
Mice were treated with lipo-polysaccharide (LPS) by in-
halation, followed by isolation of RNA from lung at 3, 6,
12, 24 and 48 hours post-treatment. In total 42 animals
were studied: 7 animals at each time-point and a group
of control, un-treated animals. We have chosen the
single-molecule sequencing (SMS) platform for RNA
analysis due to its superior performance and reproduci-
bility for quantification of RNA expression, in part due
to the fact that it does not depend on PCR amplification
and ligation for the library preparation [16]. Total RNA
rather than the polyA + fraction was used because the
latter lacks a significant proportion of the complexity of
RNA present in the cell [10,17].
Total RNA from each sample was treated with DNAse,

subjected to a RiboMinus procedure to deplete riboso-
mal RNAs and sequenced by SMS. The basic statistics
reflecting the distribution of mapped reads in annotated
exons, introns and intergenic regions are shown in
Table 1. On average, we generated 21.1-28.8 M mapped
SMS reads per animal per time point, of which 12.2–

16.6 M could be mapped uniquely to the genome. After
subtracting reads mapping to ribosomal RNAs, mito-
chondria and genomic ribosomal RNA repeats from
total uniquely-mapping reads, each sample was found to
yield on average 7.0–9.6 M informative reads, which
serve as the basis for all subsequent analyses in this
work (Table 1). The LPS signal transduction cascade
rapidly triggers changes in transcriptional regulation,
resulting in the induction and repression of hundreds of
genes in many cell types [18-22]. Detection of these
well-known inflammation markers serves as an indicator
of the performance of the experimental system. As
expected, we detected induction of over 1000 genes as
early as the 3 hr time point, including the major compo-
nents of the mammalian inflammatory pathways, such
as chemokine ligands and their receptors, interleukins
and their receptors, growth factors, complement compo-
nents and others (St. Laurent et al., manuscript in
preparation).
Consistent with our previously published-results [10],

63.6–64.7% of the informative reads mapped outside
exons of annotated genes as defined by the UCSC Genes
track [23] and thus represent the RNAs from the non-
coding portion of the genome (Table 1). The proportion
of the latter was fairly consistent across all time points
(Table 1) and all animals (data not shown). The relative
mass of intronic RNAs dominated the non-exonic RNA
population: ~ 66% of non-exonic informative reads fell
within introns (Table 1). This amounted to ~ 42% of all
informative reads – a higher fraction than that of reads
mapping to annotated exons (~36%, Table 1). This ob-
servation posed an important question: whether the in-
tronic RNAs simply represented unspliced pre-mRNAs
or whether they could indeed be a source of stand-alone,
functional RNAs. If the former is true, then the fraction
of the so-called “dark matter” RNA in the cell is fairly
small and could be explained by the exons of yet un-
annotated intergenic RNAs. On the other hand, if the
latter is true, it would mean that intronic RNAs harbor a
significant amount of functional RNAs.
It is worth noting that in our analysis intronic RNAs

refer to any RNAs encoded by genomic regions anno-
tated as introns, including excised introns, alternative
isoforms of exons, as well as standalone sense or anti-
sense transcripts transcribed from their own promoters
that overlap intronic regions. The first clue that intronic
RNAs should not be disregarded came from the observa-
tion that the signal from intronic RNA was not evenly
spread among genes: rather, annotated genes differed
significantly in the amounts of intronic RNAs (Figure 1).
On one side, Sf3b1 represents an example of a gene with
high RNAseq signal in exons and very low signal in most
introns, mirroring the two annotated exon-intron struc-
tures of the gene (Figure 1A). In contrast, the RNAseq
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Table 1 Distribution of mapped reads among different genomic annotations

Time
point
(hours)

All
mapped
reads

Uniquely
mapped
reads

Uniquely
mapped reads
that are rRNA
or rRNA repeat

Uniquely
mapped
reads that
are chrM

Informative
reads

Informative
reads that
overlap with
exons*

% of
non-
exonic
reads

Informative
reads that
overlap with
introns

% of
Informative
reads that
overlap with
introns

% of Informative reads
that overlap with
introns as a fraction of
non-exonic reads

Informative
reads that
are
intergenic

% of
Informative
reads that
are
intergenic

0 172,810,082 100,490,763 37,454,298 4,040,580 58,995,885 21,353,240 63.8 % 25,213,131 42.7 % 67.0 % 12,429,515 21.1 %

3 188,573,448 111,280,605 39,613,334 4,490,786 67,176,485 24,307,053 63.8 % 28,235,047 42.0 % 65.9 % 14,634,386 21.8 %

6 201,295,896 116,218,502 47,449,481 4,055,092 64,713,929 22,823,246 64.7 % 28,228,817 43.6 % 67.4 % 13,661,866 21.1 %

12 170,486,061 93,829,203 39,479,285 3,924,386 50,425,532 18,187,717 63.9 % 21,318,414 42.3 % 66.1 % 10,919,401 21.7 %

24 157,234,367 91,301,394 34,072,429 4,477,595 52,751,370 18,760,773 64.4 % 22,667,538 43.0 % 66.7 % 11,323,060 21.5 %

48 147,848,170 85,053,947 32,412,171 3,634,177 49,007,599 17,832,101 63.6 % 20,929,521 42.7 % 67.1 % 10,245,978 20.9 %

*Exons were defined by the UCSC Genes track (Methods).
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signal in the Asxl1 and Fmnl2 genes reached comparable
levels in both exons and introns, (Figure 1B and C). The
presence of transcripts like Sf3b1 suggests that relatively
high levels of intronic RNAs found in Asxl1 and Fmnl2
genes is not a general property of mouse genes. To cal-
culate how many transcripts resembled Sf3bl in terms of
the low level of intronic RNAs, we compared the RNA-
seq densities in the introns to that of exons in each
annotated mouse transcript. Since it is not uncommon

even in transcripts with overall low intronic RNAseq sig-
nal to have some introns with high signal, as exemplified
by a retained intron of Sf3b1 (Figure 1), we used the en-
tire lengths of intronic and exonic portion of each tran-
script for calculation of intronic and exonic densities in
this analysis. We calculated average intronic and exonic
densities for each of the 6 timepoints by averaging across
7 animals in each timepoint. We then sorted the tran-
scripts by minimum exonic density and picked the top

Figure 1 RNAseq profiles representing annotations with little intronic signal (A) and extensive intronic signal (B & C). The profiles are based
on the control RNA samples. Positions of RT-PCR products presented in Figure 7 are shown (see Additional file 4: Table S3 for more details).
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half in order to remove transcripts with low read counts
in exons that would result in imprecise calculations. We
then calculated the minimum intron/exon ratios across
the 6 datapoints for each transcript and selected tran-
scripts whose corresponding ratios were ≤0.1 that would
be similar to that exhibited by Sf3b1 (0.062). We
selected the minimal intron/exon ratio because the levels
of intronic RNAs were subject to change throughout the
time course often without the concomitant change in
exons, and as such the minimum intron/exon ratio
would more accurately represent the baseline intronic
RNA level relative to its exons for a given locus. In total
7,779 (32.6%) of expressed annotated mouse transcripts
used in this analysis satisfied this very stringent criterion.
This means that for thousands of different mature tran-
scripts, the intronic RNAs are efficiently removed by the
cell. One would expect that intronic RNAs that escape
removal and persist within this cellular context could
play some functional role.

Levels of intronic RNAs are independent of those of
exons or other introns
As the next step, we investigated whether levels of in-
tronic RNAs in general mirrored those of the exons of
their associated transcripts, or whether the two were
relatively independent from each other. Some contro-
versy in this regard exists in the literature. The report by
van Bakel et. al. [9] found a near perfect correlation be-
tween the levels of corresponding intronic and exonic
RNAs as shown in Figure 1C of that report. However,
our previous work has suggested significant levels of
variation between the RNA levels of introns and exons
[10,17]. The discrepancy could be explained by the fact
that the van Bakel et. al. work has relied on PCR amplifi-
cation during their library preparation, which can distort
levels of original RNA populations [17,24,25], while SMS
used in our previous and current work avoids amplifica-
tion altogether, and provides a sensitive, linear, and
highly reproducible signal for RNAseq analysis. We cal-
culated the global coefficient of correlation between the
densities of reads in introns and exons of each annotated
gene in each sample. Since we have previously observed
that different introns of the same gene can have very dif-
ferent densities of RNAseq signal [10] (also see below),
for this analysis and all subsequent analyses we treated
each intron separately by comparing it to the density of
exonic reads for the entire mature transcript that har-
bors it. An intron with the same genomic coordinates
found in more than one annotated transcript structure
was compared to each such transcript separately (Meth-
ods, also Additional file 1: Figure S1). The distribution
plot of 8,918,127 total data points of exon-intron dens-
ities (Methods) revealed significant spread with no gen-
eral trend (Figure 2A). Consistently, Spearman rank

correlation performed globally on this data set measured
0.4. Overall, this suggests that on a genome-wide basis
the density of RNA signal for any given intron exhibits a
wide divergence from that for the exons of the corre-
sponding transcript.
We then calculated Spearman rank correlation be-

tween RNAseq densities of each intron and the corre-
sponding exons throughout the time course by
comparing 42 exon-intron densities for each animal in
each time point for each intron-exon pair (Methods).
The histogram of the resulting correlation coefficients
for 220,645 exon-intron pairs from this analysis is shown
in Figure 2B. Interestingly, 62,848 (28.5%) pairs showed
negative or zero correlation coefficients and, an add-
itional 71,591 (32.4%) pairs have positive, but weak
(0 < 0.2) correlations. Only 16,316 (7.4%) pairs showed
relatively strong correlation (>0.5).
We then asked how well different introns of the same

transcript correlate with each other. We used two metrics
– correlation of different introns of the same transcript
with each other throughout the time course, and the range
of differences of the intronic RNAseq signal within the
same transcript. We expected that if an intron indeed har-
bored independently regulated transcripts, these tran-
scripts would not correlate with the levels of either exons
or other introns from the same locus. The correlations be-
tween an intron N and all other introns in a given locus
were split into bins according to the correlation that this
intron had with the corresponding exons as shown in
Figure 2B. Finally, for each intron we plotted maximum
and minimum correlation values with other introns of the
same locus (Figure 2C).
Indeed, introns that correlated well with their corre-

sponding exons also had higher correlations with the other
introns, as evidenced by the upward trend of the minimal
correlation box plots in the right portion of the Figure 2C.
This would suggest that they most likely represent pre-
mRNA, at least in this biological source. On the other hand,
introns that did not correlate well with exons also had a
tendency to correlate less with other introns of the same
transcript as evidenced by the decreased minimal correl-
ation on Figure 2C. The contrasting statistical behavior is
consistent with these introns harboring independently-
regulated transcripts.
We then asked how introns of the same transcript

might differ in terms of abundance with their corre-
sponding RNAs. For each transcript with 2 or more
introns analyzed in Figure 2C above, we calculated the
average density of each intron per each time point (aver-
age of 7 animals). We then calculated the ratios of the
introns with the maximum and the minimum densities
of each transcript - the results are shown in Figure 2D.
Interestingly, the median maximum/minimum density
ratio was in the range of 5.5-6.0, showing that levels of
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Figure 2 (See legend on next page.)
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intronic RNAs within the same transcript could indeed
vary significantly. Again, this is consistent with separate
fates of RNA made from different introns even from the
same transcript.

Introns encode relatively abundant RNA species
The median ratio of intronic densities to their corre-
sponding exonic densities was found to be 11.95% across
all samples in the “Total Intron-Exon Pair-Wise Dataset”
(Methods). However, as mentioned above we also
observed heterogeneity in the level of intronic RNA sig-
nal, even among different introns of the same gene.
Therefore, we asked how many individual introns have
at least comparable or higher read densities than that of
their corresponding exons in at least one animal at any
time point. We calculated the maximum ratio of intron/
exon densities for each intron that could be found in
any of the 42 animals at any timepoint. The distribution
of these ratios is shown in Figure 2E. In total, out of
117,314 introns with unique start and stop genomic
coordinates tested here, 25,821 had at least 50% of the
density of the corresponding exons and 5,753 had higher
densities than the exons in at least one animal in at least
one time point (Figure 2E).
We were intrigued by the introns whose densities are

higher than that of exons in this analysis and investi-
gated this further. The introns were stratified based on
the maximum ratio of intron/exon density. In the >10
fold category, represented by 96 introns, most (~90%)
contained annotated non-coding RNAs, with half of the
introns containing snoRNAs found only in the Ensembl
database (Table 2). While the reads corresponding to
snoRNAs annotated by UCSC were removed from this
analysis, those corresponding to snoRNAs specific to the
Ensembl database were not. In some cases, the high level
of signal also extended outside of the boundary of the
UCSC snoRNAs, giving the entire intron a high average
RNAseq density (Table 2). This overall result was not
un-expected considering that the most abundant in-
tronic RNAs are the ones more likely found using the
standard molecular biological techniques and thus would
be annotated in the genomic databases. Detection of
annotated non-coding RNAs in the top tier introns vali-
dated one of the criteria used to identify this tier,

specifically the maximum intron/exon density ratio (also
see below for more details).
Also as expected, once we lowered the maximum in-

tron/exon density ratio to include the introns with still
significant, but lower ratio of 2–10 and 1–2 fold, the
situation reversed. More than 90% of introns in these
much more numerous categories did not have any anno-
tated RNA (Table 2). However, the overall trend remained
the same: the fraction of annotated RNAs in the 2–10 fold
introns is higher than in the 1–2 fold ones. Overall, out of
5,753 introns whose density was equal or higher than that
of the corresponding exons in at least one animal, 5,494
(95.5%) did not have annotated RNAs (Table 2).
Interestingly, even in the >10 fold group, 8 introns ap-

pear to harbor un-annotated RNAs. One of these 8 was
determined to be a snoRNA found previously in platy-
pus based on the BLAST alignment of the sequence, but
not annotated in any database used above (not shown).
The remaining 7 seem to represent novel RNAs with no
BLAST hits to any sequence of known function and 4
examples are shown in Figure 3. They are likely to be
functional considering that they come from a class of
introns heavily enriched in annotated functional non-
coding RNAs, but some of them are conserved
(Figure 3A and B) and some are not (Figure 3C and D)
as judged by their PhastCons scores. This is consistent

(See figure on previous page.)
Figure 2 Correlation between levels of exonic and intronic RNAs. (A) Plot of normalized read densities for every intron and corresponding
exons: the exon-intron densities for every animal were combined and the top half of the dataset based the highest exonic densities is plotted. (B)
Histogram of Spearman rank correlations obtained for every intron-exon pairs throughout the time course of LPS treatment. (C) Histogram of
minimal (min) and maximum (max) correlations (Y-axis) between an intron and all other introns of the same transcript. The X-axis shows the
correlation of the intron with the corresponding exons of the transcript as shown in the panel B. (D) Boxplots of the ratio of maximum/minimum
intronic RNAseq density of different introns in the same transcript for each time point. Intronic density was calculated as the average of the 7
animals per each time point. (E) Histogram of maximum ratio of intron/exon densities for each intron that could be found in any of the 42
animals at any timepoint.

Table 2 Annotation of abundant introns based on
presence of known small RNAs

Maximum intron/Exon density

>10
fold

2-10
fold

1-2
fold

1 fold and
above

Total introns* 96 707 4,950 5,753

UCSC snoRNAs 34 19 23 76

Ensemble snoRNAs 48 31 17 96

Non-mouse
snoRNAs

1 0 0 1

Ensemble snRNAs 2 7 8 17

RNA repeats 3 14 52 69

Un-annotated 8 636 4,850 5,494

Un-annotated % 8.3% 90.0% 98.0% 95.5%

*Introns overlapping an annotation were removed from the subsequent
analysis. For example, introns overlapping UCSC snoRNAs were not to be used
for comparison with Ensembl snoRNAs and so on.
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with the complex relationship between non-coding
RNAs and sequence conservation [26].
These two examples shown in Figure 3B and C are of

additional interest: they are annotated as “retained” in a
long partially spliced RNA by Ensembl. However, the
profile of the RNAseq signal which is much higher in
each of the two introns than in the surrounding exons
suggests that they function on their own and not as part
of a longer mRNA as suggested by the annotation. This
exemplifies a larger theme which stipulates that an in-
tron could function as a separate entity even if it is cur-
rently annotated as part of a larger RNA species.

Levels of intronic RNA can have the same biological
variance as their corresponding exons
Accurate and precise regulation of a biological molecule
separates functional behavior from noise. Therefore, we
asked whether the steady-state levels of intronic RNAs
could be as tightly regulated as those of exons. We rea-
soned that the level of control exerted over the steady-
state level of a transcript would manifest itself in the
variation of its levels measured among different
genetically-identical individuals maintained in the same

conditions. Levels of tightly regulated RNAs would vary
less than those of RNAs under little regulatory control.
Our system is well-suited for measurement of such vari-
ation – we have profiled 7 animals of the same gender
and similar age per time point from a genetically-
homogeneous strain of mice using SMS, which generates
highly reproducible results [17], a key to the endeavor.
To accomplish this, we calculated the coefficient of

variation (CV) of each individual intron and the corre-
sponding exons among 7 animals for each time point,
resulting in 1,231,535 intron-exon combinations (Meth-
ods). While the much lower intronic density precludes a
direct comparison between the CV’s of the introns and
exons (Methods), we asked how many introns had the
same or lower CV than the corresponding exons at any
time point. Surprisingly, 40,948 out of 98,190 introns
used in this analysis satisfied this criterion, despite the
fact that the RNAseq median densities within these
introns were 20.78% of that of the corresponding exons.
In other words, the levels of 41.7% of introns have the
same or lower animal-to-animal variation within the
same time point of LPS treatment (or control) as the cor-
responding exons, even though their relative levels are

Figure 3 Examples of novel intronic RNAs whose RNAseq densities in the control (untreated with LPS) sample are >10 fold higher than
those of the corresponding exons. The PhastCons track from the UCSC browser represents the Euarchontoglire subset. One of these introns is
close to an annotated snoRNA Snora26 (B), which is interesting considering that sometimes multiple snoRNAs are encoded within the same
locus.
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on average ~5 fold lower, suggesting an extraordinary
level of biological control of steady state expression of
intronic RNA.

Most of the transcripts changing during LPS inflammation
originate from non-coding regions
As a next step, we interrogated the entire genome (exonic,
intronic and non-exonic regions) for the presence of
RNAs that change during different stages of inflammation
irrespective of the presence of annotation. Determining
un-annotated RNAs presents a unique challenge because
their sequences are not known and the read length is
shorter than the sequence of the entire RNA molecule.
Therefore, we have chosen an unbiased approach to iden-
tify such regions, based on splitting the genome into a
series of non-overlapping bins of different sizes, and then
counting the number of SMS reads in each bin, in each

sample, and then comparing to the control. We have pre-
viously reported this approach [17] with the difference
that here we used bins of varying sizes for more accurate
detection of different types of transcripts (Methods).
An example of a known non-coding RNA detected with

this method, the primary transcript for miRNA mir-21,
whose transcription increases during inflammation [27], is
shown in Figure 4. A portion of the Tmem49 locus
where mir-21 is located, is heavily upregulated after
3 hours of LPS treatment while the rest of the Tmem49
locus does not exhibit change (Figure 4). The upregu-
lated region also overlaps the primary transcript for
miRNA mir-21 characterized in humans [28] but not
annotated in the human or mouse transcript databases,
such as UCSC Genes.
Table 3 summarizes the results of the genome-wide

differentially-expressed (DE) bin analysis for all time

Figure 4 An example of a known non-coding RNA, the primary precursor transcript of mir-21 upregulated at 3 hrs after LPS treatment.
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Table 3 Distribution of differentially expressed (DE) bins among different genomic annotations

3 hours 6 hours 12 hours 24 hours 48 hours

Down-
regulated*

Up-
regulated*

Down-
regulated*

Up-
regulated*

Down-
regulated*

Up-
regulated*

Down-
regulated*

Up-
regulated*

Down-
regulated*

Up-
regulated*

Total number of DE bins 8,316 17,348 4,107 6,746 5,276 5,264 6,714 5,464 6,217 3,939

Exonic bins 392 2,053 249 356 299 434 334 258 203 269

Bins that overlap both exons and introns 648 2,597 409 699 492 704 566 617 429 386

Bins that overlap Ensembl exons 127 297 79 92 79 110 101 104 72 58

Bins that overlap exons of Ensembl
retained introns

27 78 29 26 24 20 31 32 25 25

Bins that overlap both Ensembl exons
and exons of Ensembl retained introns

3 9 1 1 0 2 5 2 0 1

Intronic bins 6,530 10,274 3,041 5,063 4,062 3,515 5,359 3,995 5,070 2,953

Bins that overlap EST (both exons
and introns)

75 223 41 65 57 71 50 53 65 46

Bins that overlap EST (exons only) 25 115 23 34 29 46 19 33 21 16

Bins that overlap EST (introns only) 248 527 73 123 86 96 95 99 91 56

Intergenic bins 241 1,175 162 287 148 266 154 271 241 129

Total number of DE bins 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %

Exonic bins 4.71 % 11.83 % 6.06 % 5.28 % 5.67 % 8.24 % 4.97 % 4.72 % 3.27 % 6.83 %

Bins that overlap both exons and introns 7.79 % 14.97 % 9.96 % 10.36 % 9.33 % 13.37 % 8.43 % 11.29 % 6.90 % 9.80 %

Bins that overlap Ensembl exons 1.53 % 1.71 % 1.92 % 1.36 % 1.50 % 2.09 % 1.50 % 1.90 % 1.16 % 1.47 %

Bins that overlap exons of Ensembl
retained introns

0.32 % 0.45 % 0.71 % 0.39 % 0.45 % 0.38 % 0.46 % 0.59 % 0.40 % 0.63 %

Bins that overlap both Ensembl exons
and exons of Ensembl retained introns

0.04 % 0.05 % 0.02 % 0.01 % 0.00 % 0.04 % 0.07 % 0.04 % 0.00 % 0.03 %

Intronic bins 78.52 % 59.22 % 74.04 % 75.05 % 76.99 % 66.77 % 79.82 % 73.11 % 81.55 % 74.97 %

Bins that overlap EST (both exons
and introns)

0.90 % 1.29 % 1.00 % 0.96 % 1.08 % 1.35 % 0.74 % 0.97 % 1.05 % 1.17 %

Bins that overlap EST (exons only) 0.30 % 0.66 % 0.56 % 0.50 % 0.55 % 0.87 % 0.28 % 0.60 % 0.34 % 0.41 %

Bins that overlap EST (introns only) 2.98 % 3.04 % 1.78 % 1.82 % 1.63 % 1.82 % 1.41 % 1.81 % 1.46 % 1.42 %

Intergenic bins 2.90 % 6.77 % 3.94 % 4.25 % 2.81 % 5.05 % 2.29 % 4.96 % 3.88 % 3.27 %

*Relative to the control time point.
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points. Overall, most changes are seen at the 3 hr time
point, followed by the 6 hr time point, consistent with
previous reports of expression analysis during LPS
induced inflammation [29]. On average, ~80% of all bins
that changed at any given time point did not overlap
exons of UCSC Genes (Table 3). The majority of DE
bins fall within intronic regions: on average, ~70% of all
DE bins. Overall, at any given time point, thousands of
loci contained at least one DE intronic bin (Table 4).
While the trivial explanation of these findings could
have been that the intronic regions simply follow the
change of the corresponding mature RNAs (the exons),
relatively few loci followed this pattern. Interestingly,
many intronic transcripts changed without accompany-
ing change in the same direction in the corresponding
exons of the gene. Figure 5 shows two such examples:
Prkca and Slc24a3, encoding protein kinase C alpha and
sodium/potassium/calcium exchanger 3 respectively.
Both have a number of DE bins that are down-regulated
at 3 hrs distributed throughout the intronic regions of
both transcripts and mostly limited to introns with the
highest signal, which also happen to be the longest
introns of these genes – the second introns (Figure 5).
The exonic portions of these transcripts show little change
at 3 hrs or any subsequent time point (Additional file 2:
Table S1). In fact, the exons of both genes show slight (al-
beit not statistically significant at p-value= 0.05) change in
the opposite direction (upregulation) at 3 hrs (Additional
file 2: Table S1). The Spearman rank correlations between
the densities for these introns and the exons for both
genes throughout the time course were quite low: -0.0936
and 0.0785 respectively (Additional file 2: Table S1). For
example, in Prkca, in 4 out of 5 LPS treatment time
points, the level of the longest intron was lower than in
the controls at statistically-significant levels (p-value <
0.05). However, at no time point were the level of
exons different than in the control at the same level of
significance (Additional file 2: Table S1). This argues
against a simple model where transcription would be
shut off for both genes and intronic transcripts would
decrease rapidly simply because they are less stable
than the mature RNAs. In that case, we would have
expected to observe an eventual drop in exonic RNA
signal and we did not observe it for either gene during
48 hrs. Furthermore, the average CV for both introns
throughout all time points was quite similar to that of
the exons (Additional file 2: Table S1), again suggesting
that the cells regulate the levels of both these introns
as tightly as their corresponding exons, yet quite inde-
pendently of each other.
Overall, thousands of such examples exist: just at the

3 hr time point, we found 3,890 annotated transcripts
corresponding to 1,556 loci that had at least one intronic
down-regulated bin and 6,165/2,472 transcripts/loci that

had at least one intronic up-regulated bin with no ac-
companying changes in exons of these genes (Table 4).
Reciprocally, 49.60% to 82.01% of intronic DE bins fell
into introns of genes that did not show change at any
timepoint (Table 4). This is consistent with the overall
low correlation between expression levels of intronic
and exonic RNAs (see Figure 2). Multiple such examples
existed at each time point as summarized in Table 4.
Overall, 7,319 loci had at least one DE intronic bin with-
out accompanying change in the levels of exons in at
least one time point.
It is worth noting that even though the dominant

trend in the Slc24a3 locus was downregulation of the
entire very long intron 2 at the 3 hr timepoint, there is
however a portion of intron 11 that is upregulated at the
3 hrs timepoint, and this portion is detected by one DE
bin– see Figure 5C. This illustrates the fact that the
RNA output is very complex, with different transcripts
potentially regulated differently, even when they are
derived from the same locus. It also shows that fre-
quently only portions of introns could be retained in
stable transcripts and thus a more refined approach like
the genomic bins is required.

Number of introns that potentially contain functional
RNAs in one tissue
Perhaps one of the most interesting questions is whether
an application of the parameters developed above can
enrich for functional non-coding RNAs and if so, how
many introns would be detected using such parameters.
We have already shown above that the “Maximum In-
tron/Exon Density Ratio” can enrich for previously-
annotated non-coding RNAs (Table 2). We decided to
extend this analysis to all parameters developed in this
work. To gauge the enrichment for functional non-
coding RNAs, we have selected the set of snoRNAs spe-
cific to the Ensembl database and not found in the
UCSC Genes database used by us as the surrogate for
the annotated genome (see above). In this sense, the
Ensembl-specific snoRNAs became our test set of
known functional non-coding RNAs. We have then
asked how many introns would pass any of the para-
meters used by us above and whether these introns
would be enriched in the expressed Ensembl-specific
snoRNAs (Methods).
The results of this analysis are summarized in the

Table 5. All of the six criteria used gave statistically sig-
nificant enrichment of the Ensembl-specific snoRNAs
(Table 5). The most significant criteria were “Maximum
Intron/Exon Density Ratio” and “DE at any time point”.
This was followed by the “Coefficient of Variation” and
then by ratio of intronic density to that of the intron
with the minimal intronic density in the locus (Table 5).
The least useful (yet still significant) criteria were “Exon-
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Table 4 Distribution of intronic differentially expressed (DE) bins

All intronic bins:

3 hours 6 hours 12 hours 24 hours 48 hours

Down-
regulated*

Up-
regulated*

Down-
regulated*

Up-
regulated*

Down-
regulated*

Up-
regulated*

Down-
regulated*

Up-
regulated*

Down-
regulated*

Up-
regulated*

Total Up- or
Down-Reg.
All Time Points

Intronic bins** 6,530 10,274 3,041 5,063 4,062 3,515 5,359 3,995 5,070 2,953

Introns overlapping
intronic bins

4,331 6,995 3,149 5,152 3,779 3,645 4,063 3,856 4,096 3,087 24,181

Transcripts overlapping
intronic bins

5,433 8,463 4,709 7,557 5,387 5,555 5,674 5,522 5,814 4,870 20,061

Loci overlapping
intronic bins

2,254 3,622 1,972 3,082 2,315 2,340 2,331 2,321 2,416 2,046 8,016

Intronic bins with no corresponding changes in the exons:

Intronic bins** 3,569 4765 2,292 4,033 3,016 2,665 3,413 3,134 4,131 2,449

Introns overlapping
intronic bins

2,813 4,414 2,435 4,131 2,906 2,849 3,014 3,114 3,514 2,613 19,462

Transcripts overlapping
intronic bins

3,890 6,165 3,727 6,098 4,253 4,522 4,422 4,626 5,054 4,186 18,209

Loci overlapping
intronic bins

1,556 2,472 1,474 2,316 1,754 1,777 1,713 1,820 1,974 1,620 7,319

*Relative to the control time point; **After removal of bins overlapping exons of Ensembl annotations.
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Figure 5 Examples of intronic RNAs downregulated at 3 hrs LPS with no changes in the exonic RNAs. The panel (C) shows zoom-in
around the DE bin marked with an arrow in the panel (B). More details in the text. Positions of RT-PCR products presented in Figure 7 are shown
(see Additional file 4 Table S3 for more details).
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Table 5 Number of introns that contain functional RNAs based on various criteria

Criterion Threshold
used

Number of
introns
detected *

Number of
ensembl-specific
snoRNAs
detected

p-value** of
overlap with
ensembl-specific
snoRNAs

“Sense”
introns
(> = 63 %
sense reads)

“Sense-antisense”
introns ([37 %;
63 %) sense reads)

“Antisense”
introns (<37 %
sense reads)

Fraction of introns
with abundant
antisense
transcription

1. Correlation between RNAseq
densities of each intron and the
corresponding exons (Figure 2B)

≤ 0 30,141 111 0.009 28,617 1,258 266 5.1 %

2. Correlation with other introns
(Figure 2C)

≤ −0.3 8,989 39 0.019 8,529 384 76 5.1 %

3. Intronic density relative to the minimal
intronic density in a
transcript*** (Figure 2D)

≥ 10 18,863 104 2.34E-10 17,491 1,101 271 7.3 %

4. Maximum Intron/Exon Density
Ratio (Figure 2E)

≥ 1 5,753 95 1.37E-42 4,936 594 223 14.2 %

5. Coefficient of variation of
each intron (Text)

≤ that of
exons

40,948 201 4.31E-16 39,146 1,107 695 4.4 %

6. DE in any timepoint (Table 3) Presence
of a DE bin

25,739 159 1.34E-22 24,626 714 387 4.3 %

Total number that pass at least
one criterion

82,481 349 4.49E-27 77,611 3,517 1,341 5.9 %

Maximum number that pass at
least two criteria

35,979 229 1.90E-40 34,315 1,248 416 4.6 %

Maximum number that pass at
least three criteria

10,111 103 2.02E-30 9,671 319 121 4.4 %

* With unique coordinates.
** Based on 534 Ensembl-specific snoRNAs (see Methods).
*** See Methods.
**** The following was done: 1. Average intronic density was calculated per each time point, introns were sorted based on this value and an intron with minimal value for each time point was identified. 2. Per each
time and each intron, the ration of the density for this intron versus the minimal intronic value in this locus was calculated. 3. Introns passing the threshold in at least one timepoint were taken.
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Intron Correlation” and “Correlation with other introns”
that were set to select introns with low correlation with
the corresponding exons or other introns of the same
locus (Table 5). Overall, 82,481unique introns were
found to pass at least one of these parameters, 35,979
passed at least two and 10,111 passed at least three
(Table 5). In all cases the detection of the Ensembl-
specific snoRNAs was highly significant (Table 5). It is
worth emphasizing that introns that passed these criteria
are likely to produce functional RNAs in just one tissue
(lung) and one condition (inflammation) – other lists
will likely exist for other biological systems and these or
similar parameters might be helpful in uncovering those.
The list of all 82,481 unique introns that were found to
pass at least one of these parameters is provided in the
Additional file 3: Table S2.
In addition, we investigated whether functional non-

coding RNAs encoded in introns were derived from the
same strand as the gene itself or the opposite strand.
Since our cDNA synthesis method does not exclude
spurious second-strand cDNA synthesis, we had to ac-
count for the fraction of antisense reads that could be
derived from this process. We did that by aligning all
RNAseq reads to known exon-exon junctions and deter-
mining the fraction of exon-exon junction spanning
reads thatwere antisense to them. While not all such
reads are artificial, for example some of them could be
produced by RNA copying [30], this still allowed us to
estimate the maximum level of artificial antisense reads
present in our dataset. The average fraction of sense
reads spanning the splice junctions was found to be 83%
and standard deviation 20%. Therefore, introns with a
fraction of sense reads ≥63% were considered to be har-
boring predominantly sense transcripts. It is important
to note that such introns could still have antisense tran-
scripts, but the levels of these antisense transcripts
would be appreciably lower than the sense transcripts.
Similarly, introns with a fraction of sense reads <37%
were considered to harbor predominantly antisense tran-
scripts, and those with 37-63% were considered to har-
bor both sense and anti-sense transcripts (Table 5,
Additional file 3: Table S2).
As expected, the majority of introns harbored sense

transcripts, with the fraction of introns with evidence of
abundant antisense transcripts ranging from 4.3% to
14.2% depending on parameters used. This is signifi-
cantly less than the previous estimates of 50-70 +% of
global antisense transcription obtained in previous
genome-wide surveys [31,32], but again it is worth stres-
sing that only abundant antisense transcripts would be
detected by this method. Interestingly, the fraction of
introns with antisense reads is among the lowest in
introns with low variance (low CV) (4.4%) and is the
highest in introns with high RNAseq density relative to

the corresponding exons (14.2%) (Table 5, Additional file 3:
Table S2). This is consistent with what we would expect:
antisense transcripts would likely be regulated differently
than the sense intronic transcripts and thus the CV of
introns with a lot of antisense transcription would be high
and they would be excluded by the low CV filter. On the
other hand, since antisense transcripts would add to the
overall mass of RNA made from introns, the density of
RNA signal in such introns would be high and they would
be enriched using the second filter.

Linc RNAs represent a minor fraction of the non-coding
transcriptome
Long Intergenic Non-Coding (linc) RNA regions were first
identified based on profiling of histone modifications asso-
ciated with elongating RNA Pol II in mouse [33] and then
human tissues [34]. This class of non-coding RNAs has
become quite prominent in the past 2–3 years [35] due to
in-depth analysis of several linc RNAs, most notably
HOTAIR [36].
We thus investigated the distribution of our inform-

ative reads and DE bins among the mouse linc RNA
regions published by Guttman et al. In total, we could
remap 1,666 out of the original 1,673 regions to mm9.
We realized that 530 of those regions originally found in
the intergenic space now map to or overlap UCSC Genes
as exemplified by Figure 6 where 2 linc RNA regions
map to Mecom locus (Figure 6). Interestingly, the gen-
omic span of the observed RNAseq signal in the introns
of the Mecom locus is larger than the linc RNA regions
(Figure 6), suggesting that when the linc RNA loci over-
lap the RNAseq signal, they are often shorter than the
full extent of the expressed domain. We then sought to
determine the abundance of these regions in our RNAseq
data based on the fraction of informative reads that map
onto genic and intergenic lincs. In total, we found that
only ~2.5% of informative reads mapped into genic lincs
and only ~0.7% mapped into intergenic lincs (Table 6).
This is consistent with the overall notion that the in-
tronic signal typically dominates the transcriptome and
lincs that are part of intronic RNAs tend to be more
abundant. This is also illustrated by the lincRNA regions
in Figure 6: the linc RNA regions on the left outside of
the Mecom coding locus are expressed at a much lower
level than the two intronic lincs. Also, a minor fraction
of DE bins mapped into the linc RNA regions: ~1.1% of
non-exonic DE bins mapped to genic linc regions and an
additional ~0.9% to intergenic linc regions (Table 6).

Intronic RNAs represent long RNAs
It has been reported that cells depleted for the compo-
nents of RNA degradation machinery, such as the exo-
some, have higher levels of some non-coding RNAs
[37,38]. It has also been reported that stable small RNA
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products could in fact be detected from longer RNAs
[39,40]. It is conceivable that long intronic regions found
here were represented mostly by overlapping short RNA
molecules that span such intronic regions. As such, we
investigated whether intronic transcripts found here could
in fact represent long RNA species. To accomplish this,
we have selected 3 loci and performed 2–3 RT-PCR
experiments per locus with overlapping primer pairs that
were designed to amplify products on the order of 4.5-
5 kb in length (Figures 1 and 5, Additional file 4 Table S3).
In addition, for each RT-PCR experiment, we have used a
gene specific primer for reverse transcript located 4-5 kb
downstream of the PCR primer pair (Methods). Thus, the
entire length of the corresponding RNA from which such
RT-PCR product could be obtained would be on the order
of 8–10 kb (Additional file 4: Table S3). In fact, we could
obtain RT-PCR products of expected lengths for all
regions tested (Figure 7). This suggests that the lengths of
the intronic RNAs would be larger than 8-10 kb.

Discussion
The discovery of pervasive transcription of the mamma-
lian genome [5,32,41-43] has provoked intense debate as
recently as one or two years ago [6,8,9,44]. With the re-
cent reports by the ENCODE consortium finally setting
aside any doubts about wide-spread existence of RNA
transcribed from non-coding regions of our genome
[11,12], the debate is shifting from the existence of the
“dark matter” RNA to its function. Nowhere is this de-
bate sharper than in the intronic regions of protein

coding genes that cover ~40% of our genome, and where
the majority of non-exonic RNAs map [6,9]. If intronic
RNAs, for the most part, simply represent pre-mRNAs
or spliced introns en route to degradation, then it would
be fair to say that there is likely little functional “dark
matter” RNA in the genome. Following similar logic,
transcription in the intergenic space would also eventu-
ally be populated by exons of the novel transcriptional
units separated by presumed non-functional intronic
space. This “null hypothesis” could reconcile a view that
there is a lot of non-exonic RNA in a cell, while there is
little “dark matter” functional RNA. And, while some in-
tronic non-coding RNAs are well known, they could be
an exception to the rule.
Here, we challenge this general notion and provide

evidence that many intronic RNAs can display features
consistent with function: their levels of expression and
their biological variation during a physiological time
course, or among different individuals of the same strain,
can often occur with a magnitude similar to that of exons.
Furthermore, levels of intronic RNAs often do not de-
pend on levels of their exonic counterparts. Based on
these criteria, many introns produce RNA molecules
whose fates in the cell are different from that of exonic
RNAs, in response to the important biological stimulus
of LPS induced inflammation. The combination of these
and other parameters as shown in Table 5 could guide
the selection of intronic regions that encode RNAs with
functions distinct from thoseof pre-mRNAs, in a given
process such as inflammation.

Figure 6 Examples of lincRNA regions originally found in intergenic regions [33] that are actually part of longer intronic transcripts.
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Table 6 Distribution of informative reads and DE bins in annotated lincRNA regions

Time
point
(hours)

Informative
reads

Informative reads
that overlap with
genic lincRNA
regions*

% of Informative
reads that overlap
with genic lincRNA
regions

Informative reads
that overlap with
intergenic lincRNA
regions*

% of Informative
reads that overlap
with intergenic
lincRNA regions

Non-
exonic
DE
bins**

Non-exonic
DE bins in
genic linc
RNA regions*

% of Non-
exonic DE bins
in genic linc
RNA regions*

Non-exonic DE
bins in
intergenic linc
RNA regions*

% of Non-exonic
DE bins in
intergenic linc
RNA regions*

0 58,995,885 1,472,090 2.5 % 420,117 0.7 %

3 67,176,485 1,619,443 2.4 % 482,092 0.7 % 19,433 214 1.1 % 147 0.8 %

6 64,713,929 1,626,306 2.5 % 474,877 0.7 % 8,912 89 1.0 % 78 0.9 %

12 50,425,532 1,268,052 2.5 % 348,418 0.7 % 8,376 84 1.0 % 72 0.9 %

24 52,751,370 1,342,859 2.5 % 387,030 0.7 % 10,128 130 1.3 % 73 0.7 %

48 49,007,599 1,278,355 2.6 % 359,202 0.7 % 8,688 86 1.0 % 65 0.7 %

*As defined by the Additional file 2: Table S1 from Guttman et al., 2009 [33].
**Relative to the control time point.
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While these arguments do not tell us how intronic
RNAs function, they suggest that they should not be
ignored or automatically assigned to the category of anno-
tated pre-mRNAs as suggested by van Bakel et al. [8,9].
On the contrary, our results suggest a situation where in-
tronic RNAs and exons have different functional fates in
the cell. Overall, we believe that the question of function
of intronic RNAs will become key in the genomics of non-
coding RNAs and genomics in general. We found a sig-
nificant fraction of intergenic transcription [10] and in this
work approximately 21% of all informative reads and 8%
of all DE bins fell within intergenic regions (Table 3).
However, as the annotations of the known transcripts ex-
pand, most of the intergenic transcript bins will be cate-
gorized as intronic or exonic as well. For example, about
half of intergenic DE bins overlap ESTs (Table 3), with the
majority of them overlapping EST introns (Table 3), sug-
gesting that the labels “intron” or “exon” should not influ-
ence an unbiased investigation of function.
This knowledge has an immediate application in mo-

lecular diagnostics as intronic RNAs can apparently
provide additional information about a biological state
that cannot be obtained just by the analysis of exons
alone. As a matter of fact, microarray-based analysis of
specific biological systems have indeed shown that
non-exonic RNAs, including intronic RNAs, not only
can be used as diagnostic markers [45,46], they could
actually be better discriminators and predictors than
exons [47,48]. This is very consistent with the overall
conclusions of this work.
This begs the question of what potential functions

could be carried out by intronic RNAs. We think that
there are at least two likely possibilities: precursors to
smaller functional RNAs, and RNA scaffolds. The gen-
eral theme of production of smaller RNAs from larger
precursors is now recognized in the field [49]. For ex-
ample, miRNAs and other known small RNAs are pro-
duced from larger precursors, such as the annotated
precursor to mir-21 that overlaps introns of Tmem49
(Figure 4). Among the intronic and intergenic regions
upregulated after LPS treatment, there are indeed those

overlapping miRNAs (Additional file 5: Figure S2), sug-
gesting that at least some such regions could serve as
primary transcripts further processed into the small func-
tional miRNA molecules. It is also interesting in this re-
spect that a cluster of piRNAs was found in the Prkca
gene, albeit not in the intron that was found to be highly
expressed and changing after LPS induction (Figure 5A).
In addition to annotated classes of small RNAs, introns
could be processed into yet unknown small RNAs that
could have function, potentially similar to that reported
previously for Kit RNA degradation products [50]. On
the other hand, the role of RNA as a scaffold has been
demonstrated by Silver and colleagues [51]. Considering
the very large size of some of the intronic regions ex-
emplified by the Prkca and Slc24a3 genes (Figure 5 and
Additional file 2: Table S1), it is an attractive possibility
that these molecules serve as massive scaffolds for various
protein-binding factors that could even bridge distal DNA
loci in the 3-dimensional volume of the nucleus [15].
While the fact of pervasive transcription is firmly es-

tablished now as mentioned above, as history shows, it
can fade somewhat with time, with focus instead shifting
to separately developed lists of long non-coding RNAs
detected in specific experiments or filtered by certain
properties that hint at functionality [33,34,52-55]. In this
respect, it is important to realize that these lists of non-
coding RNAs usually only cover a few percent of the
genome, representing only a small fraction of the
original pervasiveness of transcription. And, as we have
shown in this work with the list of the lincRNA regions
[33], the contribution of such lists to the overall mass of
cellular RNA is small and it’s not uncommon for such
regions to represent longer transcripts (Figure 6).

Conclusions
This study presents a highly quantitative, comprehensive
and unbiased RNAseq dataset showing that most of the
RNAs that change during inflammation correspond to the
non-coding, predominately intronic, regions of the gen-
ome. These non-coding RNAs would not have been
detected if only the exons of protein-coding mRNAs or

Figure 7 Detection of long transcripts in intronic regions using RT-PCR. Reactions were done with (“+”) and without (“-”) reverse
transcriptase. The size range where the expected PCR products should fall is shown on the right. M- size standard. See text, Figures 1 & 5 and
Methods for more details.
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relatively few non-coding RNAs from existing lists were
considered as most of the genomic regions they are
derived from are not annotated. In general, large numbers
of intronic RNAs have properties comparable to those of
stand-alone functional RNA species, suggesting that they
are more than just discardable parts of pre-mRNAs. In
summary, these results argue for a global change in think-
ing away from one where intronic RNAs are automatically
relegated into the pre-mRNA category. Rather, the com-
munity should analyze RNAs from these regions with the
same interest and rigor as it does mRNAs or linc RNAs.

Methods
Biological material
Female Balb/c mice, approx. 6–8 weeks old (Balb/c:
OlaHsd, nulliparous and non-pregnant) were used in this
study as a well-established model of LPS-induced inflam-
mation. All animals were weighed and randomized prior to
their first challenge: in consideration of their weight they
were distributed evenly to groups of eight animals each.
For the induction of respiratory inflammation, all animals
were exposed to a defined LPS aerosol, except the negative
control group which was exposed to clean air only. The
aerosols were generated using an Aeroneb nebulizer. The
LPS inhalation was done using aerosolized lipopolysacchar-
ide (deposited dose approx. 20 ng LPS) with 0.021% LPS
solution for an inhalation period of 10 min on three con-
secutive days. After the final challenge a necropsy was per-
formed at the following time points: 0 (clear air only, no
LPS), 3, 6, 12, 24 and 48 hours.
Animals were treated using the vehicle 7 days before first

inhalative challenge and daily 1 hour before challenge to
LPS or clean air (the control group). Animals from all
groups were sacrificed painlessly with an overdose of pento-
barbital sodium (NarcorenW) 0 (control) and 3, 6, 12, 24
and 48 hours after LPS-challenge. Seven animals were
assessed per time point. The inflammatory status in lungs
was analysed including the numbers of macrophages/
monocytes, neutrophils, eosinophils and lymphocytes by
counting a total number of 300 cells per cytospot.
Whole lungs were excised, cut into small pieces (max

0.5 cm diameter) and transferred in a sufficient volume
of RNAlater (Ambion) and frozen in liquid nitrogen. The
tissue samples were stored at −70°C until RNA isolation.

Isolation of total RNA from tissues
Total RNA from tissue samples and cell lines was ex-
tracted using TRIzolW reagent (Invitrogen Corp. Catalog
No. 15596–026) using manufacturer’s protocol. The sam-
ple was homogenized while suspended within an appro-
priate volume (10x sample volume) of reagent. After a
brief incubation at room temperature, the samples
were centrifuged to remove insoluble material and the
supernatant transferred to a fresh tube. Choloroform

(0.2x TRIzol volume) was then added to the contents
of the new tube and vigorously vortexed. After a few
minutes of incubation at room temperature samples were
then centrifuged for 15 minutes at 12000 x g at 4°C. This
results in the formation of three distinct phases. The top-
most aqueous phase, which contains RNA, was then care-
fully transferred to a new tube. The addition of isopropyl
alcohol (0.5X TRIzol volume) to the samples followed by a
10 minute room temperature incubation and a subsequent
10 minute centrifugation at 12000 x g at 4°C precipitated
the RNA into a gel-like pellet at the bottom of the tube.
After the removal of the supernatant, the pellet was washed
twice in 1 ml of ice-cold 75% ethanol. The resultant pellet
of RNA was then allowed to dry for about 5–10 minutes
and finally resuspended in DEPC-treated water. The quality
and the quantity of the resulting RNA was then measured
using spectrophotometric techniques on a NanoDrop in-
strument (Thermo Scientific).

RNA processing and SMS
Total RNA was first DNase treated to remove any re-
sidual DNA. Approximately 40 μg of total RNA (with
20 μl 10x buffer, 4 μl DNase 1 (Ambion, AM8170G),
2 μl Rnase-out (Invitrogen, 10777019) in a total volume
of 200ul) is incubated for 30 minutes at 37°C. Samples
are then cleaned using the RNeasy MinElute cleanup kit
(Qiagen, 74204) following manufacturer’s protocol. In
brief, 700 μl Buffer RLT and 500 μl 100% Ethanol are
added to the sample which is then added to a MinElute
spin column. The columns are washed with 500ul Buffer
RPE followed by 500 μl 80% Ethanol. After an additional
2 minute centrifugation to remove any residual ethanol
the sample is eluted in 14ul DEPC treated water. Quality
of RNA was then assessed using an Agilent 2100 Bioana-
lyzer and their RNA 6000 Nano Kit (Agilent, 5067–
1511) using manufacturer's protocol and the sample was
quantified using a Nanodrop as per above. Samples were
depleted for rRNA through the use of the RiboMinus
Eukaryote Kit for RNA-Seq (Invitrogen, A10837-08) fol-
lowing the manufacturer's protocol. The RNA was then
converted into cDNA, and subjected to SMS as previ-
ously described [10]. Processing of SMS reads, align-
ments to the genome and data analysis was done as
previously described [10]. The reads were trimmed to a
minimal length of 25 bases resulting in an average size
of 35 bases and maximum of 71 bases and aligned with
a minimal normalized score = 4.5 [10].
All genomic coordinates listed throughout this work

correspond to the mm9 version of the mouse genome.

Intronic intervals preparation
We extracted intronic intervals from the knownGene.txt
file downloaded from the UCSC genome browser site,
based on the mm9 version of the mouse genome and last
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modified 30-May-2011 00:13. We then removed parts of
introns that overlapped exons annotated in the same
knownGene.txt file, also see Additional file 1: Figure S1.
Random chromosomes were ignored. In total, 198,248
unique intronic intervals were finally extracted.

Calculation of RNA densities in introns and exons
To calculate intronic densities, we counted number of reads
that fall within each intronic interval (see Additional file 1:
Figure S1), normalized this number by 10 M informative
reads and then calculated the density of reads per 1 kb for
each intronic interval. Since our intronic intervals do not
overlap UCSC exons, reads originated from that exons are
not counted in intronic densities. A read that overlap exons
and introns was counted as 0.5 read in both exonic and in-
tronic counts. We also calculated normalized exon densities
for the entire length of each annotated transcript that har-
bors each intron. We then paired the values of the intronic
and exonic densities for each animal for each time point
separately.

Calculation of global correlation between levels of introns
and their corresponding exons
This analysis encompassed 197,631 unique introns longer
than 30 nt in 47,773 transcripts annotated in the UCSC
Genes database [23]. In total, for each animal we gener-
ated 459,132 pairs of intron-exon values x 7 animals x 6
time points (“Total Intron-Exon Time-Course Dataset”),
with one intron on average being present in 2.3 tran-
scripts. We then combined the data for all animals/time-
point (7 animals x 6 time points), removed data points
where both exonic and intronic densities were equal to
zero, and then sorted the data by exonic density and
picked the top half of the data points, in order to remove
transcripts with low read counts. The minimal exonic
density in this dataset was 30.88 (per 10 M mapped reads
per 1 kb of exonic sequence) which translated into a
minimum of 7.6 actual reads per 1 kb in the sample with
the smallest number of reads. Overall, this filtered data-
set yielded 8,918,127 total data points of exon-intron
densities, we will refer to this dataset as the “Total
Intron-Exon Pair-Wise Dataset”. This dataset was used
to generate the plot in the Figure 2A.

Calculation of correlation between individual introns and
their corresponding exons throughout the time course
We started with the “Total Intron-Exon Time-Course
Dataset”, removed the intron-exon combinations with
zero reads in all exonic or intronic samples and then
selected the top half exonic expressors based on average
density of exonic signal to generate the “Top expressed
Intron-Exon Time-Course Dataset”. This dataset was used
to generate the correlations plotted in the Figure 2B.

Calculation of intron-intron correlation within the
same locus
We took all loci used to generate the histogram in the
Figure 2B. Since that dataset was selected based on the
exonic expression, we wanted to remove any loci with
low intronic signal to make sure that any low correlation
is not due to stochastic variation in signal. For each
locus we calculated maximum intronic density in any of
the 42 animals, then we kept only those introns whose
locus fell in the top half of maximum intronic density.
We then calculated for every intron of a transcript with
2 or more introns a Spearman correlation of its RNA
levels with those of the other introns in all 42 animals.
In total, we used 59,027 unique introns for this analysis.
The results of this analysis are shown in the Figure 2C.

Calculation of coefficient of variation of introns and
corresponding exons
We started with a total of 2,754,792 intron-exon combi-
nations (459,132 intron-exon combinations x 6 time
points) to generate the “Total Intron-Exon Per Time-
Point Dataset”. One complication that we faced was that
the CV of a transcript level among animals depends on
the expression level of a transcript, with more abundant
transcripts having less variation – as would be expected,
since more abundant transcripts could be measured
more reliably than the less abundant ones. Indeed, the
Spearman rank correlation between average RNA signal
density and the corresponding CV was −0.58, indicating
that transcripts with lower abundance have higher CV.
Since introns had a tendency to have lower abundance
than exons, their variation would be higher due to the
intrinsically higher variation of detection of lower-
abundant RNAs. To avoid intronic transcripts with low
levels of expression in this experiment, we sorted the
“Total Intron-Exon Per Time-Point Dataset” by average
intronic density and selected the top half of data
points for analysis where average exonic density was
positive (1,231,535 intron-exon combinations). The
median CV for introns and exons in the resulting
dataset were 35.37% and 18.97% respectively and the
median density of an intron being 18.16% of the cor-
responding exons.

Analysis of differential expression using the genomic bins
approach
Optimal detection of regions of transcription requires
the use of nested bins of different sizes. For example,
exons of protein-coding mRNAs that have a median size
on the order of 100 bp in the mouse genome would be
expected to be optimally detected with a smaller size bin
on the order of 100 bp. On the other hand, relatively
low abundance longer transcripts would be detected best
with a bin of longer size that has a chance to capture
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more SMS reads representing such transcripts. There-
fore, genome sequence was split into non-overlapping bins
of variable size 100, 200, 500 and 1000 bp and expression
density of each bin for each animal for each time point was
calculated. Up-regulated and down-regulated bins (fold
change>2 between densities averaged across 7 animals) on
each time point comparing to control (which is zero time
point) were identified. One-tailed paired Student’s t-test
was used to estimate the fold change significance across 7
animals and p-value <0.001 cutoff was applied. If one group
consists only of zero values, then artificially 0.5 read is
added to one animal and 0.5 read is subtracted from
another animal of the group before expression density and
Student score calculation.
Bins of different sizes were then merged together.

Whenever a bin of smaller size overlapped a bin of a lar-
ger size, a bin of the smaller size was chosen as it is
more likely to represent the accurate bounds of the
detected transcribed element. The power of a more pre-
cise bin approach is illustrated by detection of a specific
isoform of Adora 3 consisting of only two exons out of a
total of 9 known for this locus and upregulated at the
3 hour time point (Additional file 6: Figure S3).
To account for multiple testing, we randomly shuffled

within each animal the expression values of 6.2 M of
100 bp bins that had non-zero expression at least for
one animal at one time point. The number of bins that
had p-value cutoff below 0.001 after the shuffling was at
least 100 times less than the number of such bins before
the shuffling. This control test allows us to infer that the
false discovery rate of our statistical method that extracts
DE bins is below 1%.

Identification of transcripts that contain differentially
expressed intronic bins with no change in exons
Genomic bins located in introns (overlap with exons not
allowed) of annotated UCSC Genes were selected from list
of up-regulated and down-regulated on 3 hrs after LPS
bins described above. Up-regulated or down-regulated
bins where the corresponding gene had respectively at
least one up-regulated or down-regulated exon at 3 hrs
after LPS (fold change> 1.414, p-value < 0.01) were filtered
out from the list.

Calculation of overlap with Ensembl-specific snoRNAs
1,383 snoRNAs annotated by the Ensembl and not UCSC
Genes database were selected to assess enrichment of
functional non-coding RNAs presented in Table 5. Of
the 1,383 Ensemble-specific snoRNAs, 534 were located
in 198,248 unique introns used in this paper, specifically
in 528 introns, and became the test set for the enrich-
ment of functional RNAs in the introns. Tested introns
dataset was different for each of 6 types of analysis pre-
sented in Table 5 as described in the text. Subset of

introns was selected from tested introns dataset using
criteria presented in Table 5. Numbers of introns over-
lapping the 534 snoRNAs from each tested dataset was
found. P-value was calculated using Fisher exact test, tail
of hypergeometric distribution was calculated

p� value ¼
Xn

i¼m

n
i

� �
N � n
M � i

� �

N
M

� � ;

where
N - number of unique Introns in the tested dataset,
M - number of unique Introns from tested dataset

passing the threshold,
n - number of unique Introns from N overlapping

snoRNAs,
m - number of unique Introns from M overlapping

snoRNAs.

RT-PCR analysis
First strand synthesis was performed using Superscript
III (Invitrogen, 18080–051) following the manufacturer’s
protocols with 200 ng Total DNase-free RNA (see above)
as a template. See the Additional file 4: Table S3 for Gene
specific primers used. Each sample had RNA removed
with the addition of 1ul Rnase H, incubated at 37°C for
30 minutes. Subsequent PCR was performed using Long
Amp Taq PCR Kit (NEB, E5200S) following the manufac-
turer’s protocol on 2.5ul cDNA in a 25ul final volume
(94°C 30s, 34x (94°C 30 s, 55°C 30s, 65°C 5 m), 65°C
10 m). See the Additional file 4: Table S3 for PCR pri-
mers used. Products were run on 1% agarose gel.

Additional files

Additional file 1: Figure S1. A scheme of the strategy to partition
intronic coordinates in the cases of overlapping transcripts. Boxes –exons,
lines – introns. Regions 1–4 were used to calculate the average read
density of the corresponding introns.

Additional file 2: Table S1. Correlation of specified introns of Prkca
and Slc24a3 with their corresponding exons.

Additional file 3: Table S2. Properties of individual mouse introns.

Additional file 4: Table S3. Details of RT-PCR analysis in selected
mouse introns.

Additional file 5: Figure S2. An example of DE bins specifically
detecting a specific up-regulated isoform of Adora3 locus.

Additional file 6: Figure S3. Examples of DE bins detecting regions
around annotated miRNAs, found both in an intron (mir-135b, A) and an
interegenic region (mir-146a, B).
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