809 research outputs found

    The architecture of the protein domain universe

    Get PDF
    Understanding the design of the universe of protein structures may provide insights into protein evolution. We study the architecture of the protein domain universe, which has been found to poses peculiar scale-free properties (Dokholyan et al., Proc. Natl. Acad. Sci. USA 99: 14132-14136 (2002)). We examine the origin of these scale-free properties of the graph of protein domain structures (PDUG) and determine that that the PDUG is not modular, i.e. it does not consist of modules with uniform properties. Instead, we find the PDUG to be self-similar at all scales. We further characterize the PDUG architecture by studying the properties of the hub nodes that are responsible for the scale-free connectivity of the PDUG. We introduce a measure of the betweenness centrality of protein domains in the PDUG and find a power-law distribution of the betweenness centrality values. The scale-free distribution of hubs in the protein universe suggests that a set of specific statistical mechanics models, such as the self-organized criticality model, can potentially identify the principal driving forces of molecular evolution. We also find a gatekeeper protein domain, removal of which partitions the largest cluster into two large sub-clusters. We suggest that the loss of such gatekeeper protein domains in the course of evolution is responsible for the creation of new fold families.Comment: 14 pages, 3 figure

    Folding of Cu, Zn superoxide dismutase and Familial Amyotrophic Lateral Sclerosis

    Get PDF
    Cu,Zn superoxide dismutase (SOD1) has been implicated in the familial form of the neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS). It has been suggested that mutant mediated SOD1 misfolding/aggregation is an integral part of the pathology of ALS. We study the folding thermodynamics and kinetics of SOD1 using a hybrid molecular dynamics approach. We reproduce the experimentally observed SOD1 folding thermodynamics and find that the residues which contribute the most to SOD1 thermal stability are also crucial for apparent two-state folding kinetics. Surprisingly, we find that these residues are located on the surface of the protein and not in the hydrophobic core. Mutations in some of the identified residues are found in patients with the disease. We argue that the identified residues may play an important role in aggregation. To further characterize the folding of SOD1, we study the role of cysteine residues in folding and find that non-native disulfide bond formation may significantly alter SOD1 folding dynamics and aggregation propensity.Comment: 16 pages, 5 figure

    Simplified Approaches to Complex Biological Systems

    Get PDF

    Identifying the protein folding nucleus using molecular dynamics

    Get PDF
    Molecular dynamics simulations of folding in an off-lattice protein model reveal a nucleation scenario, in which a few well-defined contacts are formed with high probability in the transition state ensemble of conformations. Their appearance determines folding cooperativity and drives the model protein into its folded conformation. Amino acid residues participating in those contacts may serve as “accelerator pedals” used by molecular evolution to control protein folding rate.R01-52126 - PHS HHS; GM20251-01 - NIGMS NIH HHS; GM08291-09 - NIGMS NIH HHSAccepted manuscrip

    Discrete molecular dynamics studies of the folding of a protein-like model

    Full text link
    Background: Many attempts have been made to resolve in time the folding of model proteins in computer simulations. Different computational approaches have emerged. Some of these approaches suffer from the insensitivity to the geometrical properties of the proteins (lattice models), while others are computationally heavy (traditional MD). Results: We use a recently-proposed approach of Zhou and Karplus to study the folding of the protein model based on the discrete time molecular dynamics algorithm. We show that this algorithm resolves with respect to time the folding --- unfolding transition. In addition, we demonstrate the ability to study the coreof the model protein. Conclusion: The algorithm along with the model of inter-residue interactions can serve as a tool to study the thermodynamics and kinetics of protein models.Comment: 15 pages including 20 figures (Folding & Design in press

    Protein Evolution within a Structural Space

    Get PDF
    Understanding of the evolutionary origins of protein structures represents a key component of the understanding of molecular evolution as a whole. Here we seek to elucidate how the features of an underlying protein structural "space" might impact protein structural evolution. We approach this question using lattice polymers as a completely characterized model of this space. We develop a measure of structural comparison of lattice structures that is analgous to the one used to understand structural similarities between real proteins. We use this measure of structural relatedness to create a graph of lattice structures and compare this graph (in which nodes are lattice structures and edges are defined using structural similarity) to the graph obtained for real protein structures. We find that the graph obtained from all compact lattice structures exhibits a distribution of structural neighbors per node consistent with a random graph. We also find that subgraphs of 3500 nodes chosen either at random or according to physical constraints also represent random graphs. We develop a divergent evolution model based on the lattice space which produces graphs that, within certain parameter regimes, recapitulate the scale-free behavior observed in similar graphs of real protein structures.Comment: 27 pages, 7 figure
    corecore