224 research outputs found

    Space Launch System Base Heating Test: Experimental Operations & Results

    Get PDF
    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported

    Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    Get PDF
    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle

    Status, Plans, and Initial Results for ARES 1 Crew Launch Vehicle Aerodynamics

    Get PDF
    Following the completion of NASA's Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Exploration Launch Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented

    Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    Get PDF
    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing

    Space Launch System Base Heating Test: Environments and Base Flow Physics

    Get PDF
    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen-hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during flight. Due to the complex nature of rocket plume-induced flows within the launch vehicle base during ascent and a new vehicle configuration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot-fire test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate flight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative effort that has not been attempted in 40+ years for a NASA vehicle. This paper discusses the various trends of base convective heat flux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base flow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi-empirical numerical models to determine exceedance and conservatism of the flight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented

    Eteokles in Spain? On Brecht’s Mein Bruder war ein Flieger

    Get PDF
    One of Bertolt Brecht’s most famous poems, Mein Bruder war ein Flieger, is often invoked as a manifesto for pacifist ideals, but some essential questions (who is the lyric I? what is the literal meaning of the poem?) have hardly received any attention. By evoking the poem’s nature as a Kinderlied, the context of its first publication, and its relationship with Brecht’s play Die Gewehre der Frau Carrar, this article tentatively identifies the source of its final pointe in a famous passage of Aeschylus’ Seven against Thebes, thereby suggesting—on the basis of textual comparisons—an example of far-reaching, ideological Antikerezeption in Brecht’s oeuvre, working all the way down to his Kalendergeschichten and to his Antigone

    Neither Agamemnon nor Thersites, Achilles nor Margites:The Heraclid Kings of Ancient Macedon

    Get PDF
    In modern scholarship a distinctly ‘Homeric’ presentation of the ancient Macedonian kings and their court still endures, in spite of recent notes on the use of ‘artifice’ in key ancient accounts. Although the adventures and achievements of Alexander the Great are certainly imbued with epic colour, to extend those literary tropes and topoi to the rule of earlier kings (and to wider Macedonian society) is often to misunderstand and misrepresent the ancient evidence. This paper offers a fresh review of the presentation of the early-Macedonian monarchy in the ancient sources, and considers the depiction of the Argead dynasty in both hostile and more-sympathetic accounts. It highlights the importance of another mythological model for these ancient kings: one that was supremely heroic, but not Homeric. The Argead appropriation of Heracles, Pindar’s ‘hero god’ (ἥρως θεός: Nem. 3.22), was a key part of the self-representation of successive kings. Undoubtedly the crucial paradigm for Macedonian rulers, Heracles provided them with an identity and authority that appealed to diverse audiences, and it is time to consider the subtlety of the Argead presentation of their dynasty as Heraclid

    Introduction

    Get PDF
    corecore