68 research outputs found

    Metastasis suppression: a role of the Dice(r)

    Get PDF
    Recent studies have implicated the microRNA biogenesis enzyme Dicer as a suppressor of breast carcinoma metastasis and elucidated upstream signaling pathways that control Dicer levels.National Institutes of Health (U.S.)Massachusetts Institute of Technology. Ludwig Center for Molecular OncologyUnited States. Dept. of DefenseBreast Cancer Research Foundatio

    Roles of the MicroRNA miR-31 in tumor metastasis and an experimental system for the unbiased discovery of genes relevant for breast cancer metastasis

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references.In these studies, the microRNA miR-31 was identified as a potent inhibitor of breast cancer metastasis. miR-31 expression levels were inversely associated with the propensity to develop metastatic disease in human breast cancer patients. Additionally, various functional analysis revealed that miR-31 expression was both necessary and sufficient to impede breast cancer metastasis. These effects did not involve confounding influences on primary tumor development; instead, miR-31 exerted its anti-metastatic activities by impinging upon at least three distinct steps of the invasion-metastasis cascade: local invasion, one or more early post intravasation events, and metastatic colonization. At a mechanistic level, miR-31 impaired metastasis via the pleiotropic suppression of a cohort of target genes that otherwise operate to promote metastasis, including integrin a5, radixin, and RhoA. Significantly, the concomitant re-expression of integrin a5, radixin, and RhoA sufficed to override the full spectrum of miR-31'7s anti-metastatic activities. Moreover, the concurrent short hairpin RNA-conferred knockdown of endogenous integrin a5, radixin, and RhoA levels closely phenocopied the known consequences of ectopic miR-31 expression on metastasis. Integrin a5, radixin, and RhoA were found to act during at least partially unique steps of the invasion-metastasis cascade downstream of miR-31. Notably, the temporally controlled re-activation of miR-31 in already-established metastases elicited metastatic regression. These anti-metastatic therapeutic responses were attributable to the capacity of acutely re-expressed miR-31 to induce both cell cycle arrest and apoptosis; such effects arose specifically within the context of the foreign microenvironment present at a metastatic locus. When taken together, these findings provide mechanistic insights concerning the regulation of breast cancer metastasis and suggest that miR-31 may represent a clinically useful prognostic biomarker and/or therapeutic target in certain aggressive human carcinomas. In addition, a novel experimental system for the unbiased identification of metastasisrelevant genes was described. The utility of this system was demonstrated in an initial proof-of-concept screen, which implicated RhoJ as a previously unappreciated modulator of cell motility. Collectively, these observations imply that the single-cell clone-based screening methodology outlined herein may represent a generally useful means by which to enumerate novel regulators of various metastasis-relevant processes.by Scott J. Valastyan.Ph.D

    A Pleiotropically Acting MicroRNA, miR-31, Inhibits Breast Cancer Metastasis

    Get PDF
    MicroRNAs are well suited to regulate tumor metastasis because of their capacity to coordinately repress numerous target genes, thereby potentially enabling their intervention at multiple steps of the invasion-metastasis cascade. We identify a microRNA exemplifying these attributes, miR-31, whose expression correlates inversely with metastasis in human breast cancer patients. Overexpression of miR-31 in otherwise-aggressive breast tumor cells suppresses metastasis. We deploy a stable microRNA sponge strategy to inhibit miR-31 in vivo; this allows otherwise-nonaggressive breast cancer cells to metastasize. These phenotypes do not involve confounding influences on primary tumor development and are specifically attributable to miR-31-mediated inhibition of several steps of metastasis, including local invasion, extravasation or initial survival at a distant site, and metastatic colonization. Such pleiotropy is achieved via coordinate repression of a cohort of metastasis-promoting genes, including RhoA. Indeed, RhoA re-expression partially reverses miR-31-imposed metastasis suppression. These findings indicate that miR-31 uses multiple mechanisms to oppose metastasis.Massachusetts Institute of Technology (Daniel K. Ludwig Foundation Cancer Research Professor)American Cancer Society (ACS Research Professor)United States. Dept. of Defense (Breast Cancer Research Program Predoctoral Fellow)United States. Dept. of Defense (Breast Cancer Research Program, DoD BCRP Idea Award))Harvard University (Harvard Breast Cancer SPORE)National Institutes of Health (U.S.) (RO1 CA078461)National Institutes of Health (U.S.) (PO1 CA080111

    miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis

    Get PDF
    MicroRNAs (miRNAs) are increasingly implicated in regulating the malignant progression of cancer. Here we show that miR-9, which is upregulated in breast cancer cells, directly targets CDH1, the E-cadherin-encoding messenger RNA, leading to increased cell motility and invasiveness. miR-9-mediated E-cadherin downregulation results in the activation of ÎČ-catenin signalling, which contributes to upregulated expression of the gene encoding vascular endothelial growth factor (VEGF); this leads, in turn, to increased tumour angiogenesis. Overexpression of miR-9 in otherwise non-metastatic breast tumour cells enables these cells to form pulmonary micrometastases in mice. Conversely, inhibiting miR-9 by using a 'miRNA sponge' in highly malignant cells inhibits metastasis formation. Expression of miR-9 is activated by MYC and MYCN, both of which directly bind to the mir-9-3 locus. Significantly, in human cancers, miR-9 levels correlate with MYCN amplification, tumour grade and metastatic status. These findings uncover a regulatory and signalling pathway involving a metastasis-promoting miRNA that is predicted to directly target expression of the key metastasis-suppressing protein E-cadherin.Life Sciences Research Foundation FellowshipMargaret and Herman Sokol AwardNational Institutes of Health (U.S.) (Pathway to Independence Award (K99/R00))Howard Hughes Medical Institute (Undergraduate Fellowship)Breast Cancer Research Program (U.S.) (Predoctoral Fellowship)National Institutes of Health (U.S.) (Grant)Ludwig Center for Molecular Oncology at MI

    MicroRNAs and their target gene networks in breast cancer

    Get PDF
    MicroRNAs (miRNAs) are a major class of small endogenous RNA molecules that post-transcriptionally inhibit gene expression. Many miRNAs have been implicated in several human cancers, including breast cancer. Here we describe the association between altered miRNA signatures and breast cancer tumorigenesis and metastasis. The loss of several tumor suppressor miRNAs (miR-206, miR-17-5p, miR-125a, miR-125b, miR-200, let-7, miR-34 and miR-31) and the overexpression of certain oncogenic miRNAs (miR-21, miR-155, miR-10b, miR-373 and miR-520c) have been observed in many breast cancers. The gene networks orchestrated by these miRNAs are still largely unknown, although key targets have been identified that may contribute to the disease phenotype. Here we report how the observed perturbations in miRNA expression profiles may lead to disruption of key pathways involved in breast cancer

    Recapitulating the tumor ecosystem along the metastatic cascade using 3D culture models

    Get PDF
    Advances in cancer research have shown that a tumor can be likened to a foreign species that disrupts delicately balanced ecological interactions, compromising the survival of normal tissue ecosystems. In efforts to mitigate tumor expansion and metastasis, experimental approaches from ecology are becoming more frequently and successfully applied by researchers from diverse disciplines to reverse engineer and re-engineer biological systems in order to normalize the tumor ecosystem. We present a review on the use of 3D biomimetic platforms to recapitulate biotic and abiotic components of the tumor ecosystem, in efforts to delineate the underlying mechanisms that drive evolution of tumor heterogeneity, tumor dissemination, and acquisition of drug resistance.ope

    Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential

    Get PDF

    Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status.

    Get PDF
    MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17ÎČ-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells

    Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood

    Get PDF
    • 

    corecore