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SUMMARY

MicroRNAs are well suited to regulate tumor metas-
tasis because of their capacity to coordinately
repress numerous target genes, thereby potentially
enabling their intervention at multiple steps of the
invasion-metastasis cascade. We identify a micro-
RNA exemplifying these attributes, miR-31, whose
expression correlates inversely with metastasis in
human breast cancer patients. Overexpression of
miR-31 in otherwise-aggressive breast tumor cells
suppresses metastasis. We deploy a stable micro-
RNA sponge strategy to inhibit miR-31 in vivo; this
allows otherwise-nonaggressive breast cancer cells
to metastasize. These phenotypes do not involve
confounding influences on primary tumor develop-
ment and are specifically attributable to miR-31-
mediated inhibition of several steps of metastasis,
including local invasion, extravasation or initial
survival at a distant site, and metastatic colonization.
Such pleiotropy is achieved via coordinate repres-
sion of a cohort of metastasis-promoting genes,
including RhoA. Indeed, RhoA re-expression partially
reverses miR-31-imposed metastasis suppression.
These findings indicate that miR-31 uses multiple
mechanisms to oppose metastasis.

For a video summary of this article, see the Paper-
Flick file available with the online Supplemental Data.

INTRODUCTION

Metastases account for 90% of human cancer deaths (Gupta and

Massagué, 2006), yet our understanding of the molecular circuitry

that governs metastatic dissemination remains fragmentary. The
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invasion-metastasis cascade, which leads to these growths, is

a complex, multistep process involving the escape of neoplastic

cells from a primary tumor (local invasion), intravasation into the

systemic circulation, survival during transit through the vascula-

ture, extravasation into the parenchyma of distant tissues, the

establishment of micrometastases, and ultimately the outgrowth

of macroscopic secondary tumors (colonization) (Fidler, 2003).

MicroRNAs (miRNAs) constitute an evolutionarily conserved

class of pleiotropically acting small RNAs that suppress gene

expression posttranscriptionally via sequence-specific interac-

tions with the 30 untranslated regions (UTRs) of cognate mRNA

targets (Bartel, 2009). In mammalian cells, miRNAs effect gene

silencing via both translational inhibition and mRNA degradation;

an individual miRNA is capable of regulating dozens of distinct

mRNAs, and together the >650 human miRNAs are believed to

modulate more than one-third of the mRNA species encoded

in the genome (Bartel, 2009).

A central role for miRNAs in the establishment and progression

of human tumors has begun to emerge. More than 50% of

miRNA-encoding loci reside in chromosomal regions altered

during tumorigenesis (Calin et al., 2004), and expression profiling

reveals characteristic miRNA signatures for many tumor types—

including breast neoplasias—that predict disease status and

clinical outcome (Calin and Croce, 2006). In addition, miRNAs

have been identified that function as classical oncogenes or

tumor suppressor genes (Ventura and Jacks, 2009), as well as

a limited number that act at late stages of tumor progression

(Ma et al., 2007; Tavazoie et al., 2008; Huang et al., 2008; Asan-

gani et al., 2008; Zhu et al., 2008; Lujambio et al., 2008).

The extent to which miRNAs specifically affect metastasis

remains unclear, because all the miRNAs reported to affect

metastasis also exert potentially confounding influences on

primary tumor development, apoptosis, and/or cell proliferation

(Voorhoeve et al., 2006; Sathyan et al., 2007; Ma et al., 2007;

Si et al., 2007; Tavazoie et al., 2008; Kondo et al., 2008; Lujambio

et al., 2008). Moreover, a role for miRNAs in steps of the invasion-
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metastasis cascade subsequent to local invasion has not been

described.

The pleiotropic nature of gene regulation exhibited by miRNAs

led us to hypothesize that certain miRNAs might be endowed

with a capacity to function as crucial modulators of tumor metas-

tasis. Here, we identify an antimetastatic human miRNA, miR-31,

that acts at multiple steps of the invasion-metastasis cascade

via repression of a cohort of prometastatic targets.

RESULTS

miR-31 Expression Is Specifically Attenuated
in Metastatic Breast Cancer Cell Lines
To identify miRNAs that might regulate breast cancer metas-

tasis, we selected 10 cancer-associated miRNAs for further

characterization because of their concordant identification

among expression profiling studies of clinical breast tumors

(Iorio et al., 2005; Volinia et al., 2006), global analysis of miRNA

copy-number variation in human breast carcinomas (Zhang

et al., 2006), and localization of miRNA loci to cancer-relevant

sites of chromosomal aberration (Table S1 available online; Calin

et al., 2004). These studies did not stratify patients based on

metastasis status.

Expression of the 10 candidate miRNAs was assayed in 15

human and mouse mammary cell lines, which included normal

epithelial cells, tumorigenic but nonmetastatic cells, and meta-

static tumor cells (Table S2). The levels of a single miRNA, miR-

31, were specifically attenuated in aggressive human breast

cancer cells when compared to primary normal human mammary

epithelial cells (HMECs). Although nonmetastatic tumor cells

(HMLER, MCF7-Ras, and SUM-149) exhibited 4-fold reduced

miR-31, expression of this miRNA in metastatic SUM-159 and

MDA-MB-231 cells was diminished by >100-fold (Figure 1A).

Relative to its expression in normal murine mammary gland

(NMuMG) cells, miR-31 levels in sublines derived from a single

murine mammary tumor reflected their capacities to metasta-

size: miR-31 was reduced by 2-fold in metastatic D2.1 and

D2A1 cells, but not in nonaggressive D2.OR cells (Figure 1B).

miR-31 levels were also inversely proportional to metastatic

ability in four mouse mammary carcinoma sublines derived

from a single spontaneously arising tumor: although miR-31

levels in nonaggressive 67NR cells were similar to those in

NMuMG, miR-31 expression was progressively diminished

upon acquisition of the capacity to invade locally (168FARN),

to form micrometastases (4TO7), and to yield macroscopic

metastases (4T1) (Figure 1B). Thus, miR-31 levels are specifically

attenuated in aggressive breast cancer cells.

miR-31 expression was heterogeneous in 4T1 cell primary

mammary tumors; of note, the proportion of cells expressing

miR-31 was 10-fold reduced in lung metastases relative to the

fraction of miR-31-positive cells in the primary tumors from

which they were derived (Figure 1C). Also, 5-fold fewer cells

located near the invasive front of 4T1 cell mammary tumors ex-

pressed miR-31, compared to cells in the interior of these tumors

(Figure 1D). These data raise the possibility that selective pres-

sures diminish the prevalence of miR-31-expressing cells within

the pool of successfully metastasizing cells during the course of

metastatic progression.
miR-31 Expression Suppresses Metastasis-Relevant
Traits In Vitro
Given these inverse correlations between miR-31 levels and

malignant phenotypes, we assessed the potential for antimeta-

static roles for miR-31. Thus, we stably expressed miR-31 in

metastatic MDA-MB-231 human breast cancer cells (‘‘231

cells’’). This overexpression resulted in miR-31 levels compa-

rable to those in HMECs (Figure S1A).

Ectopic miR-31 did not affect proliferation in vitro, but did

reduce invasion by 20-fold and motility by 10-fold (Figure 2A;

Figures S1B and S1C). These effects were specifically attribut-

able to the biological activities of miR-31, as indicated by the fact

that equivalent overexpression of a control miRNA, miR-145,

failed to influence invasion or motility (Figure 2A and data not

shown). Also, miR-31-expressing cells exhibited 60% dimin-

ished resistance to anoikis-mediated cell death (Figure 2B).

These defects could not be ascribed to toxicity resulting from

ectopic miR-31 (Figure S1D). The consequences of miR-31

expression were not unique to 231 cells: miR-31 reduced inva-

sion, motility, and anoikis resistance, yet did not affect prolifera-

tion, in aggressive SUM-159 human breast cancer cells

(Figure S2). Hence, miR-31 impairs in vitro surrogates of meta-

static ability.

miR-31 Expression Suppresses Metastasis In Vivo
Because of its effects on in vitro traits associated with high-

grade malignancy, we asked whether ectopic miR-31 could

inhibit metastasis in otherwise-aggressive cells. Thus, 231 cells

expressing miR-31 were injected into the orthotopic site—the

mammary fat pad—of mice. Unexpectedly, miR-31 enhanced

primary tumor growth by 1.5-fold and correspondingly increased

cell proliferation (Figure 2C; Figure S3A). Control 231 cell primary

tumors displayed evidence of local invasion; however, miR-31-

expressing tumors were well encapsulated and noninvasive

(Figures 2D and 2E). These changes were not accompanied by

altered neovascularization (Figure S3B).

Despite their ability to generate larger primary tumors, 231

cells expressing miR-31 were strikingly impaired in their capacity

to seed lung metastases. miR-31-expressing cells formed 95%

fewer lesions than did controls 62 days after implantation

(Figure 2F). Thus, miR-31 suppresses metastasis from an ortho-

topic site, ostensibly due, at least in part, to its ability to impede

local invasion.

We addressed the possibility that miR-31’s impact on these

parameters was attributable to clonal variation in our 231 cells

by expressing miR-31 in a single-cell-derived population iso-

lated from the parental 231 cells (Figure S4A; Minn et al.,

2005). As before, when injected orthotopically, miR-31-express-

ing cells formed large, well-encapsulated primary tumors and

also reduced lung metastasis by 5-fold (Figures S4B–S4D).

Orthotopic injection of SUM-159 cells expressing miR-31 further

corroborated our earlier findings: miR-31 enhanced primary

tumor growth, yet miR-31-expressing tumors were better

confined than control tumors (Figure S5). These observations

indicated that the ability of miR-31-expressing cells to form

larger, less invasive primary tumors, as well as to seed fewer

metastases, is a specific consequence of the biological activities

of miR-31.
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Figure 1. miR-31 Levels Correlate Inversely with Metastatic Ability in Breast Cell Lines

(A) RT-PCR for miR-31 in seven human breast cell lines. 5S rRNA was a loading control. NTC, no template control. n = 3.

(B) miR-31 RT-PCR in eight murine mammary cell lines. 5S rRNA was a loading control. n = 3.

(C) In situ hybridization for miR-31 (green) in animal-matched 4T1 cell primary mammary tumors and lung metastases; DAPI counterstain (blue). n = 4.

(D) Hematoxylin and eosin (H&E) stain of a 4T1 cell primary mammary tumor (top); box: invasive front. miR-31 in situ hybridization in 4T1 cells located near the

invasive front or the interior of the primary tumors (bottom). n = 3.

Data are presented as mean ± SEM.
We determined whether miR-31’s impact on metastasis was

also attributable to effects on later steps of the invasion-metas-

tasis cascade, independent of its influence on local invasion.

Thus, we injected miR-31-expressing 231 cells directly into the

circulation of mice, thereby circumventing the initial steps of

local invasion and intravasation. After 1 day, miR-31-expressing

cells were 4-fold impaired in their ability to persist in the lungs

(Figure 2G). This difference was not a consequence of an inability

of miR-31-expressing cells to become lodged initially in the lung

microvasculature, as shown by the fact that equal numbers of

miR-31-expressing and control cells were detected in the lungs

10 min and 2 hr after injection (Figure 2G; Figure S6A). These

observations suggested that miR-31 regulates early postintrava-
1034 Cell 137, 1032–1046, June 12, 2009 ª2009 Elsevier Inc.
sation events, such as intraluminal viability, extravasation, and/

or initial survival in the lung parenchyma.

Three months after tail vein injection, miR-31-expressing 231

cells generated 40-fold fewer lung metastases than did controls

(Figure 2G). We also observed a dramatic effect on the size of

eventually formed lesions: after 3 months, miR-31-expressing

cells generated only small micrometastases although control

cells formed macroscopic metastases; this occurred despite

the fact that miR-31-expressing and control cells established

comparably sized micrometastases 1 month after injection

(Figure 2G; Figure S6B). Such effects on lesion size implied

that miR-31 affects metastatic colonization in addition to its influ-

ences on local invasion and early postintravasation events.



Inhibition of miR-31 Promotes Metastasis-Relevant
Traits In Vitro
The preceding observations demonstrated that miR-31 expres-

sion deprives metastatic cells of attributes associated with

high-grade malignancy. We next asked whether miR-31 also

prevents the acquisition of aggressive traits by otherwise-non-

metastatic human breast cancer cells. To do so, we transiently

inhibited miR-31 in noninvasive MCF7-Ras cells with either anti-

sense oligonucleotides or miRNA sponges. The latter are

expression constructs that carry miRNA recognition motifs in

their 30 UTR that bind and thus titer miRNAs (Ebert et al.,

2007). Both approaches inhibited miR-31 function by >4.5-fold

(Figure S7A). Suppression of miR-31 enhanced invasion by

20-fold and motility by 5-fold, but cell viability was unaffected

by either inhibitor (Figure 3A; Figure S7B).

Techniques for stable miRNA inhibition have been unavailable

(Krützfeldt et al., 2006). To address this problem, we modified

elements derived from the transiently expressed miRNA

sponges, cloned them into a retroviral vector, and created

MCF7-Ras cells that stably express the modified miRNA

sponges. The miR-31 sponge reduced miR-31 function by

2.5-fold, but did not affect the activity of other known antimeta-

static miRNAs (Figures S8A and S8B). The relatively modest

suppression of miR-31 conferred by stable sponge expression

elicited strong responses: invasion was enhanced by 12-fold,

motility by 8-fold, and anoikis resistance by 2.5-fold (Figure 3B;

Figure S8C). The miR-31 sponge failed to alter in vitro prolifera-

tion (Figure S8D).

When stably expressed in immortalized HMECs or tumori-

genic but nonmetastatic SUM-149 human breast cancer cells,

the miR-31 sponge elicited increased invasion, motility, and

anoikis resistance without affecting proliferation (Figure S9 and

data not shown). Collectively, these data indicated that sus-

tained miR-31 activity is necessary to prevent the acquisition

of aggressive traits by both tumor cells and untransformed

breast epithelial cells.

Inhibition of miR-31 Promotes Metastasis In Vivo
We exploited our ability to stably inhibit miRNAs in order to assess

whether miR-31 activity is required to prevent metastasis in vivo.

To do so, otherwise-nonmetastatic MCF7-Ras cells stably ex-

pressing the miR-31 sponge were orthotopically implanted into

mice. Inhibition of miR-31 failed to alter in vivo proliferation and

primary tumor growth (Figure 3C; Figure S10A). Primary tumors

derived from miR-31 sponge-expressing cells were poorly

encapsulated and locally invasive, whereas control MCF7-Ras

tumors appeared well confined and noninvasive (Figures 3D

and 3E). Again, neovascularization did not differ (Figure S10B).

Strikingly, miR-31 sponge-expressing MCF7-Ras cells metas-

tasized to the lungs in significant numbers, whereas control

tumor-bearing host lungs were largely devoid of tumor cells;

cells with impaired miR-31 activity formed 10-fold more lesions

than did controls (Figure 3F). Hence, continuous miR-31 function

is required to prevent metastasis from an orthotopic site.

We asked whether loss of miR-31 activity also promoted

metastasis by intervening at steps of the invasion-metastasis

cascade subsequent to local invasion. Thus, we intravenously in-

jected mice with miR-31 sponge-expressing MCF7-Ras cells.
Within 1 day, miR-31 inhibition enhanced cell number in the

lungs by 6-fold; similarly, at later times after injection, miR-31

sponge-expressing cells were 10-fold more prevalent in the

lungs than were controls (Figure 3G). The differing metastatic

abilities of control and miR-31 sponge-expressing cells did not

arise because of failure of control cells to become lodged initially

in the lung vasculature, as shown by the fact that equal numbers

of cells from each cohort were present 10 min after injection

(Figure 3G; Figure S11).

Suppression of miR-31 also affected lesion size 4 months after

tail vein injection: whereas control cells formed only small micro-

metastases, miR-31 sponge-expressing cells produced macro-

scopic metastases (Figure 3G). Together, these data extended

and reinforced our ectopic expression studies by demonstrating

that miR-31 affects local invasion, early postintravasation

events, and metastatic colonization.

miR-31 Directly Regulates a Cohort of Prometastatic
Genes
miR-31’s ability to impede multiple steps of the invasion-metas-

tasis cascade might derive from its ability to pleiotropically regu-

late genes involved in diverse aspects of metastatic dissemina-

tion. To identify effectors of miR-31, we used two algorithms that

predict the mRNA targets of a miRNA—PicTar (Krek et al., 2005)

and TargetScan (Grimson et al., 2007). Based on the representa-

tion of miR-31 sites in their 30 UTRs, >200 mRNAs were predicted

to be regulated by miR-31. Gene ontology (Ashburner et al.,

2000) revealed that these targets included a disproportionately

large number of genes encoding proteins with roles in motility-

related processes, such as cell adhesion, cytoskeletal remodel-

ing, and cell polarity (data not shown).

Guided by this gene ontology analysis, we cloned the 30 UTRs

of 16 putative miR-31 targets from these overrepresented cate-

gories, including several implicated in tumor invasion (Sahai and

Marshall, 2002; McClatchey, 2003), into a luciferase construct.

Reporter assays with miR-31-expressing 231 cells revealed

that miR-31 repressed six of the UTRs: frizzled3 (Fzd3), integrin

a5 (ITGA5), myosin phosphatase-Rho interacting protein

(M-RIP), matrix metallopeptidase 16 (MMP16), radixin (RDX),

and RhoA (Figure 4A). Mutation of the putative miR-31 site(s) in

these six 30 UTRs (Table S3) abrogated responsiveness to

miR-31 (Figure 4B). In the case of RhoA, whose UTR contains

two miR-31 sites separated by 152 nucleotides, mutation of

either motif abolished miR-31 responsiveness (Figure 4B), sug-

gesting functional interaction between the sites (Grimson et al.,

2007).

Endogenous Fzd3, ITGA5, MMP16, RDX, and RhoA protein

levels were assayed in miR-31-expressing 231 cells. miR-31

repressed the levels of these proteins by 40%–60%

(Figure 4C). miR-31’s effects on levels of the M-RIP protein could

not be evaluated because of the lack of appropriate antibodies.

Also, miR-31 reduced the endogenous mRNA levels of these six

targets by 2-fold in SUM-159 cells, as well as Fzd3, ITGA5,

MMP16, RDX, and RhoA mRNA levels in 231 cells (Figure 4D).

miR-31 did not affect CXCL12 mRNA levels—a computationally

predicted miR-31 target found not to be regulated by this

miRNA—in either cell type (Figures 4A and 4D). These data indi-

cated that miR-31 directly regulates endogenous Fzd3, ITGA5,
Cell 137, 1032–1046, June 12, 2009 ª2009 Elsevier Inc. 1035



Figure 2. miR-31 Expression Inhibits Metastasis

(A) Invasion and motility assays after transfection of MDA-MB-231 (231) cells with the indicated constructs. n = 3.

(B) Anoikis assays with 231 cells infected as indicated. n = 3.

(C) Primary tumor growth upon orthotopic injection of 1.0 3 106 GFP-labeled 231 cells infected as indicated. The experiment was terminated after 13 weeks

because of primary tumor burden. n = 5 per group per time point.

(D) H&E stain of 231 primary tumors 62 days after orthotopic injection.

(E) H&E stain of tissue adjacent to the indicated 231 primary mammary tumors 62 days after injection. Arrows: disseminated tumor cells in normal fat (a, b), muscle

(c, d), and subcutis (e, f).

(F) Images of murine lungs to visualize GFP-labeled 231 cells 62 days after orthotopic implantation (left). H&E stain of lungs from animals bearing the indicated

tumors (right); arrows indicate metastatic foci. n = 5.
1036 Cell 137, 1032–1046, June 12, 2009 ª2009 Elsevier Inc.



M-RIP, MMP16, RDX, and RhoA expression in human breast

cancer cells.

We determined whether concomitant repression of Fzd3,

ITGA5, M-RIP, MMP16, RDX, and RhoA correlated with disease

progression in clinical breast cancers by examining expression

profiling data from 295 primary breast tumors (Table S4; van

de Vijver et al., 2002). To do so, we constructed a miR-31 target

signature based on coordinate differential expression of these

six genes. Within this cohort, high expression of the miR-31

target signature was associated with metastasis, as well as

poor survival, relative to signature-negative tumors; 5-year

survival among patients negative for the target signature was

90%, whereas >35% of target signature-positive patients suc-

cumbed to their disease over this interval (Figures 5A and 5B).

Thus, coordinate repression of Fzd3, ITGA5, M-RIP, MMP16,

RDX, and RhoA correlated with more favorable outcome in clin-

ical breast tumors.

To assess the functional contributions of these miR-31 targets

to aggressive phenotypes, we first examined whether their inhi-

bition affected the invasion or motility of 231 cells. Transfection

with siRNAs potently reduced target protein levels without

affecting cell viability (Figures S12A and S12B). siRNAs targeting

Fzd3, ITGA5, RDX, or RhoA reduced invasion and motility,

whereas siRNAs against M-RIP or MMP16 failed to affect these

traits (Figure 5C; Figure S12C).

We asked whether inhibition of these effectors compromised

resistance to anoikis. siRNAs against ITGA5, RDX, or RhoA

sensitized 231 cells to anoikis; in contrast, siRNAs targeting

Fzd3, M-RIP, or MMP16 had no effect on anoikis resistance

(Figure 5D). Hence, suppression of Fzd3, ITGA5, RDX, or RhoA

impaired metastasis-relevant traits in vitro.

Re-expression of Fzd3, ITGA5, RDX, and RhoA Reverses
miR-31-Dependent Metastasis-Relevant Phenotypes
In Vitro
To determine whether in vitro phenotypes associated with

miR-31 expression could be reversed via restoration of Fzd3,

ITGA5, M-RIP, MMP16, RDX, or RhoA levels, we transfected

miR-31-expressing 231 cells with individual expression con-

structs rendered miRNA insensitive by deletion of their 30 UTRs;

this was not cytotoxic (Figures S13A and S13B and data not

shown). In miR-31-expressing cells, Fzd3, ITGA5, RDX, or

RhoA reversed, at least partially, miR-31-imposed invasion and

motility defects; in contrast, M-RIP or MMP16 had no effect on

these traits (Figure 5E; Figure S13C). Surprisingly, re-expression

of RDX or RhoA completely rescued miR-31-mediated invasion

and motility defects. Expression of the six targets failed to

enhance the invasion or motility of control 231 cells (Figure 5E;

Figure S13C).

We evaluated whether re-expression of any of the six targets

rescued miR-31’s effects on anoikis. ITGA5, RDX, or RhoA

reversed, at least in part, anoikis susceptibility resulting from

ectopic miR-31; in contrast, Fzd3, M-RIP, or MMP16 failed to

affect this trait (Figure 5F). In fact, ITGA5 or RhoA completely
rescued miR-31-dependent anoikis phenotypes. The six targets

did not enhance anoikis resistance in control 231 cells

(Figure 5F). Hence, Fzd3, ITGA5, RDX, and RhoA are functionally

relevant effectors of miR-31 for conferring malignant traits

in vitro.

Re-expression of RhoA Partially Reverses
miR-31-Imposed Metastasis Defects In Vivo
RhoA afforded the most pronounced reversal of miR-31-medi-

ated phenotypes. Therefore, we stably re-expressed miRNA-

resistant RhoA in 231 cells that already had been infected with

either miR-31 or control vector (Figures S14A and S14B). RhoA

did not affect proliferation in vitro, but did abrogate miR-31-

imposed invasion, motility, and anoikis resistance defects

(Figures S14C–S14F).

To ascertain whether restored RhoA levels reversed in vivo

metastasis phenotypes ascribable to miR-31, we orthotopically

injected mice with 231 cells expressing combinations of miR-

31, RhoA, and control vectors. As observed previously, miR-31

enhanced primary tumor growth (Figure 6A). RhoA initially

augmented primary tumor growth in the presence of ectopic

miR-31, but failed to do so in control 231 cells (Figure 6A). In

consonance with our earlier findings, control 231 primary tumors

were locally invasive and miR-31-expressing tumors were nonin-

vasive (Figures 6B and 6C). In control 231 cells, ectopic RhoA

failed to exacerbate the extent of local invasion; in contrast,

RhoA abolished the previously encapsulated appearance of

miR-31-expressing tumors and enabled invasion into

surrounding normal tissue (Figures 6B and 6C).

Re-expression of RhoA restored lung metastasis in miR-31-

expressing 231 cells to 75% of control cell levels, although

RhoA failed to enhance metastasis in control 231 cells

(Figure 6D). Thus, re-expression of RhoA partially, yet robustly,

reverses metastasis suppression imposed by miR-31. The

observed magnitude of rescue is surprising, because RhoA is

only one member of a larger cohort of metastasis-relevant genes

repressed by miR-31.

By intravenously injecting mice with 231 cells expressing

miR-31 and/or RhoA, we gauged whether RhoA-mediated

reversal of miR-31-imposed metastasis defects was solely

attributable to effects on local invasion. Although expression of

miR-31 and/or RhoA failed to affect the initial lodging of tumor

cells in the lung vasculature, the number of cells that persisted

in the lungs differed within one day of injection (Figure 6E;

Figure S15). As before, miR-31 inhibited both the number of

metastases formed and their eventual size (Figure 6E). Although

expression of RhoA in control 231 cells failed to enhance metas-

tasis, RhoA restored the number of lung metastases to 60% of

control cell levels in miR-31-expressing cells; however, RhoA

did not facilitate the formation of macroscopic metastases in

cells with ectopic miR-31 (Figure 6E).

Together, these data indicated that miR-31’s ability to inhibit

metastasis is attributable, in significant part, to its capacity to

inhibit RhoA. miR-31-mediated repression of RhoA affects
(G) Images of murine lungs to detect GFP-labeled 231 cells 88 days after tail vein injection (left). H&E stain of lungs (right); arrows indicate metastatic foci.

Asterisks: p > 0.66. n = 5, except for 10 min and 2 hr (n = 4).

Data are presented as mean ± SEM.
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Figure 3. Inhibition of miR-31 Promotes Metastasis

(A) Invasion and motility assays with MCF7-Ras cells transfected with the indicated transient miR-31 inhibitors. n = 3.

(B) Anoikis assays with MCF7-Ras cells stably expressing the indicated sponge. n = 3.
1038 Cell 137, 1032–1046, June 12, 2009 ª2009 Elsevier Inc.



both local invasion and early postintravasation events. However,

these data also implied that the full spectrum of miR-31’s effects

on metastasis are elicited only via the coordinate repression of

multiple targets, because suppression of RhoA alone could not

explain the complete impact of miR-31 on the number of metas-

tases formed or its effects on metastatic colonization.

Figure 4. miR-31 Directly Regulates a Cohort of Prometastatic Genes

(A) Luciferase activity in 231 cells infected with miR-31 or control vector after transfection of the indicated 30 UTR-driven reporter constructs. n = 3.

(B) Luciferase activity in the indicated 231 cells upon transfection of miR-31 site mutant 30 UTR-driven reporter constructs. wt: wild-type; site 1: the miR-31 motif

at nt 145–151 of the RhoA 30 UTR; site 2: the motif spanning nt 303–309. Asterisks: p > 0.80 relative to mutant-UTR + vector controls. n = 3.

(C) Immunoblots for endogenous Fzd3, ITGA5, MMP16, RDX, and RhoA in the indicated 231 cells. b-actin was a loading control. Repression: protein levels in

miR-31-expressing cells relative to vector controls.

(D) RT-PCR for endogenous CXCL12, Fzd3, ITGA5, M-RIP, MMP16, RDX, and RhoA. GAPDH was a loading control. Asterisks: p < 0.03 relative to vector controls.

n = 3.

Data are presented as mean ± SEM.
(C) Primary tumor growth upon orthotopic implantation of 5.0 3 105 GFP-labeled MCF7-Ras cells infected as indicated. The experiment was terminated after 16

weeks because of primary tumor burden. n = 5 per group per time point.

(D) H&E stain of MCF7-Ras primary tumors 47 days after orthotopic injection. Arrows indicate regions of poor encapsulation.

(E)H&E stainof tissueadjacent to the indicatedMCF7-Rasprimary tumors47days postinjection. Arrows: disseminated tumor cells innormal fat (a, c)and muscle (b, d).

(F) Images of murine lungs to visualize GFP-labeled MCF7-Ras cells 113 days after orthotopic injection (left). H&E stain of lungs from animals bearing the indicated

tumors (middle); arrows indicate metastatic foci. n = 5.

(G) Images of murine lungs to detect GFP-labeled MCF7-Ras cells 122 days after tail vein injection (left). H&E stain of lungs (middle); arrow indicates metastasis. n = 4,

except for 1 day (n = 3).

Data are presented as mean ± SEM.
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Figure 5. Repression of Fzd3, ITGA5, RDX, and RhoA Underlies miR-31-Dependent Phenotypes In Vitro

(A) Kaplan-Meier curves for 295 human primary breast tumors depicting metastasis-free survival, stratified based on expression of the 6-gene miR-31 target

signature. p value based on a logrank test.

(B) Kaplan-Meier 5-year survival curves for 295 breast cancer patients, stratified based on miR-31 target signature expression in their primary tumors. p value

based on a logrank test.

(C) Invasion assays with miR-31-expressing or control 231 cells transfected as indicated. Asterisks: p > 0.19 relative to vector + siControl cells. n = 3.

(D) Anoikis assays with 231 cells transfected with the indicated siRNAs. Asterisks: p > 0.80 relative to vector + siControl cells. n = 3.

(E) Invasion assays with the indicated 231 cells transfected with miRNA-resistant expression constructs. Asterisks: p > 0.61 relative to miR-31 + mock cells. n = 3.

(F) Anoikis assays with the indicated 231 cells transfected as noted. Asterisks: p > 0.11 relative to miR-31 + mock cells. n = 3.

Data are presented as mean ± SEM.
miR-31 Expression Correlates Inversely with Metastasis
in Human Breast Tumors
Because established cell lines and xenograft studies cannot fully

recapitulate clinical malignancy, we extended our analyses by

assaying miR-31 expression in specimens from 56 human breast

cancer patients (Table S5; median follow-up = 59 months). Rela-

tive to grade-matched estrogen receptor (ER)+ tumors, which are

associated with more favorable disease outcome (Sørlie et al.,

2001), basal-like tumors exhibited 40% reduced miR-31; no
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difference in miR-31 levels was observed between ER+ and

HER2+ tumors (Figure S16).

When these 56 tumors were stratified based on clinical

progression, we found that miR-31 expression was diminished

in primary tumors that subsequently metastasized, when

compared to normal breast tissue and primary tumors that did

not recur; moreover, low miR-31 levels correlated strongly with

reduced distant disease-free survival relative to tumors with

high miR-31 (Figures 7A and 7B). Similarly, within this cohort of



tumors, high RhoA expression was associated with an increased

incidence of distant metastasis (Figure S17).

The association of low miR-31 levels with metastasis persisted

independent of both tumor grade and molecular subtype

(Figure S18). Such grade and subtype independence is quite

surprising, because clinically utilized prognostic markers for

breast cancer largely correlate with these parameters; further-

more, currently available markers do not identify a worse-prog-

nosis group within the more aggressive basal-like or HER2+

subtypes (Desmedt et al., 2008). Thus, miR-31 may represent

a marker for metastasis in a variety of breast cancer subtypes;

however, its utility as a prognostic indicator will depend on

extension of these initial observations.

We next assessed the heterogeneity of miR-31 expression in

human primary breast tumors, as well as distant metastases

arising in the same patients. miR-31 was expressed in 65% of

the cells in these primary tumors; however, miR-31 was detected

in only 12%–30% of cells in patient-matched distant metastases

(Figure 7C). These data raise the possibility that selective pres-

sures operating over the course of breast cancer progression

diminish the representation of miR-31-expressing cells within

the population of successfully metastasizing cells.

Finally, we asked whether expression of ITGA5, RDX, and

RhoA was also heterogeneous in primary human breast tumors.

RDX and RhoA were expressed in 60%–75% of cells in the

primary tumors examined, whereas ITGA5 was detected in

>80% of cells (Figure 7D). Distant metastases were more homo-

geneous for the expression of RDX and RhoA than the primary

tumors from which they were derived, as indicated by the fact

that >90% of cells in the metastases expressed RDX and

RhoA (Figure 7D). Similarly, >90% of cells in the metastases ex-

pressed ITGA5; however, the widespread ITGA5 expression

observed in the patient-matched primary tumors complicates

interpretation of its expression in distant metastases (Figure 7D).

DISCUSSION

miRNAs can modulate a wide variety of biological processes. In

the present report, we demonstrate that a single human miRNA,

miR-31, is endowed with the ability to concomitantly repress

multiple prometastatic targets and to thereby inhibit several

distinct steps of the invasion-metastasis cascade. Moreover,

miR-31 levels correlate inversely with metastatic recurrence in

a cohort of human breast tumors, a preliminary association

that appears to persist independent of both tumor grade and

subtype.

Genome-wide studies have described miR-31 downregulation

or deletion of the miR-31 genomic locus in human breast cancers

(Calin et al., 2004; Zhang et al., 2006; Yan et al., 2008). Expres-

sion profiling of clinical breast tumors revealed reduced miR-

31 in luminal B (relative to luminal A), basal-like, and HER2+

tumors (Mattie et al., 2006; Blenkiron et al., 2007)—patterns of

reduction that correlate with aggressive disease (Sørlie et al.,

2001). In contrast, another profiling study found elevated miR-

31 in human breast tumors (Volinia et al., 2006). None of these

studies stratified patients by metastasis status.

A limited number of miRNAs with prometastic (miR-10b, -21,

and -373/520c) or antimetastatic (miR-34b/c, -126, -148a, -206,
and -335) functions have been identified. However, the contribu-

tions of miR-10b, miR-21, and miR-373/520c specifically to

metastasis promotion are not easily discerned because of their

mitogenic and/or antiapoptotic roles (Voorhoeve et al., 2006;

Ma et al., 2007; Si et al., 2007). Similarly, the antimetastatic

miRNAs miR-34b/c, miR-126, and miR-148a impair primary

tumor growth (Lujambio et al., 2008; Tavazoie et al., 2008),

whereas miR-206 and miR-335 inhibit proliferation or promote

apoptosis (Sathyan et al., 2007; Kondo et al., 2008), again

obscuring their precise roles in metastasis.

In contrast, miR-31 obstructs metastasis without exerting

confounding influences on primary tumor development. As

such, mir-31 might aptly be categorized as a ‘‘metastasis

suppressor gene’’ (Steeg, 2003). This unique aspect of miR-31

function, among others, raises questions regarding the still-

uncharacterized role of this miRNA in normal cell and organismic

physiology. Of significance, loss of miR-31 activity enhances

invasiveness, motility, and anoikis resistance in untransformed

human mammary epithelial cells. Hence, inactivation of miR-31

in normal epithelium may facilitate dissemination prior to trans-

formation to a fully neoplastic state. This suggests one putative

mechanism by which the invasion-metastasis cascade could

be initiated very early during the course of tumor progression,

a phenomenon that has recently been observed in clinical breast

tumors (Hüsemann et al., 2008).

Given the capacity of miR-31 to enhance primary tumor

growth, an oncogenic role for this miRNA (mechanistically inde-

pendent of its metastasis-suppressive functions) cannot be

formally excluded. Such duality of action is not unprecedented

(Massagué, 2008) and is consistent with notions that metastasis-

and tumorigenesis-enabling attributes can be biologically dis-

tinct and acquired via independent selective pressures during

malignant progression.

Previous studies have described effects of specific miRNAs on

an early stage of the invasion-metastasis cascade—local inva-

sion. The present work demonstrates that miRNAs can also influ-

ence later steps of metastasis and that an individual miRNA can

intervene at multiple distinct stages of the invasion-metastasis

cascade. miR-31 regulates the local invasion of primary

mammary tumors, as well as intraluminal survival, extravasation,

and/or initial viability in a foreign microenvironment. miR-31 also

suppresses colonization—the final and rate-limiting step of

metastasis (Fidler, 2003). miR-31-imposed suppression of

RhoA partially explains the effects of this miRNA on local inva-

sion and early postintravasation events; however, the mecha-

nisms by which miR-31 suppresses metastatic colonization

remain unresolved.

The levels of several functionally relevant effectors of miR-31

correlate with disease progression in human tumors. RhoA

expression, for example, is elevated in aggressive breast neopla-

sias (Sahai and Marshall, 2002). Similar associations have been

described in human tumors for ITGA5 (Sanchez-Carbayo et al.,

2006) and the RDX family (McClatchey, 2003).

Re-expression of several individual miR-31 targets largely

reversed miR-31-imposed defects in vitro. This may indicate

that certain miR-31 effectors activate one another; however,

ectopic ITGA5, RDX, or RhoA did not induce the expression of

other miR-31 targets (data not shown). Alternatively, available
Cell 137, 1032–1046, June 12, 2009 ª2009 Elsevier Inc. 1041



Figure 6. Re-expression of RhoA Partially Reverses miR-31-Imposed Metastasis Defects In Vivo

(A) Primary tumor growth upon orthotopic injection of 5.0 3 105 GFP-labeled 231 cells. The experiment was terminated after 11 weeks because of primary tumor

burden. Asterisks: p < 0.02. n = 5 per group per time point.

(B) H&E stain of 231 primary tumors 60 days after orthotopic injection.
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Figure 7. miR-31 Levels Correlate Inversely with Metastasis in Human Breast Tumors

(A) miR-31 RT-PCR in 54 primary breast tumors. Normal: tissue from nondiseased individuals; metastasis-positive and -free: tumors of the indicated distant

metastasis outcome. 5S rRNA was a loading control. n = 4 (normal); n = 14 (metastasis-positive); n = 40 (metastasis-free).

(B) Kaplan-Meier distant metastasis-free survival curves for 54 breast cancer patients, stratified based on miR-31 levels in their primary tumors. p value based on

a chi-square test.

(C) In situ hybridization for miR-31 (green) in patient-matched primary breast tumors and distant metastases (patient 1 = lung; 2 = pleura); DAPI counterstain (blue).

n = 8 fields.

(D) Immunohistochemical detection of ITGA5, RDX, and RhoA in patient-matched primary breast tumors and distant metastases (patient 1 = lung; 2 = pleura).

n = 8 fields.

Data are presented as mean ± SEM.
in vitro assays might inadequately model the complexity of

metastasis; hence, in vivo manifestations of modeled behaviors

may require the concurrent action of multiple miR-31 effectors.

Also, not all steps of metastasis can be recapitulated in vitro.

Consistent with these notions, RhoA completely reversed

a number of miR-31-dependent defects in vitro, yet only partially
rescued miR-31-imposed metastasis phenotypes in vivo. This

supports beliefs that miRNAs act via the pleiotropic regulation

of multiple effectors.

Our analyses rely on established human cell lines and xeno-

graft studies, approaches that cannot fully simulate clinical

carcinomas. For example, cell lines accumulate genetic changes
(C) H&E stain of tissue adjacent to the indicated 231 primary mammary tumors 60 days after injection. Arrows indicate disseminated tumor cells in normal muscle

(a, c, e, g) and fat (b, d, f, h).

(D) Images of murine lungs to visualize GFP-labeled 231 cells 60 days after orthotopic injection (left). H&E stain of lungs from animals bearing the indicated tumors

(right); arrows indicate metastatic foci. n = 5.

(E) Images of murine lungs to detect GFP-labeled 231 cells 86 days after tail vein injection (left); arrows indicate micrometastatic lesions. Asterisks: p > 0.87 rela-

tive to vector + vector controls. n = 4, except for 2 weeks (n = 3).

Data are presented as mean ± SEM.
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in culture, whereas xenografts fail to recapitulate species-

specific interactions between tumor cells and their stroma.

However, the consistency of our results upon use of multiple

independent cell lines (including a single-cell-derived popula-

tion), the convergence of our gain- and loss-of-function findings,

and our correlative studies in human breast cancer patients and

murine mammary tumor cell lines argue against major confound-

ing influences stemming from our experimental models.

Collectively, the findings of the present study carry significant

implications regarding our understanding of the pathogenesis of

high-grade malignancies. Our data suggest that the loss of

a single gene product can facilitate the completion of multiple

distinct steps of the invasion-metastasis cascade; this pleio-

tropic action may help to explain how tumor cells can accumu-

late enough genetic and epigenetic aberrations over the course

of a human lifespan to overcome the numerous barriers that nor-

mally operate to prevent metastasis. Moreover, because distant

metastases are responsible for patient mortality in the vast

majority of human carcinomas, miR-31’s ability to impede

metastasis may prove to be clinically useful.

EXPERIMENTAL PROCEDURES

Cell Culture

MDA-MB-231 and MCF7-Ras cells were obtained from the ATCC and cultured

under standard conditions. HMEC and HME cells have been described (Ma

et al., 2007). SCP3 cells were obtained from J. Massagué (Minn et al., 2005).

SUM-149 and -159 cells were provided by S. Ethier (Ma et al., 2007). D2 cells

have been described (Morris et al., 1993). 67NR, 168FARN, 4TO7, and 4T1

cells were obtained from F. Miller (Aslakson and Miller, 1992).

miRNA Detection

Total RNA, inclusive of the small RNA fraction, was extracted from cultured

cells with a mirVana miRNA Isolation Kit (Ambion). RT-PCR-based detection

of mature miR-31 and 5S rRNA was achieved with a mirVana miRNA Detection

Kit and gene-specific primers (Ambion).

miRNA In Situ Hybridization

miRNA expression was assessed from paraffin sections via a protocol adapted

from Silahtaroglu et al., (2007). In brief, after a 4 hr prehybridization, a 50 FITC-

labeled miRCURY LNA probe targeting miR-31 (Exiqon) was hybridized to

proteinase K-treated 10 mm sections at 55�C for 12 hr. Slides were then incu-

bated with anti-FITC-HRP (PerkinElmer), and the resulting signal was intensi-

fied with the TSA Plus Fluorescein System (PerkinElmer).

Human Breast Tumors

Primary breast tumors, distant metastases, and normal breast tissue were

collected and processed in compliance with a protocol approved by the Brig-

ham and Women’s Hospital IRB. Fresh tissue was harvested from patients,

OCT-embedded, snap-frozen, and preserved at �80�C. Recurrent cases

were primary tumors from patients that developed distant metastases. For

each recurrent case, two nonrecurrent cases were selected to control for

date of diagnosis, molecular subtype, lymph node status, and time of follow-

up. Total RNA was isolated from 35 mm sections via TRIzol extraction and

a mirVana miRNA Isolation Kit. To discern whether miR-31 levels correlate

with distant metastasis, primary tumors were classified as miR-31 positive

or negative. Tumors were considered miR-31 positive or negative if the

normalized expression of miR-31 resided in the top or bottom 30% of tumors

in this cohort, respectively. Similarly, tumors were classified as RhoA high or

low if their RhoA levels were in the top or bottom 30% of tumors examined.
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Invasion and Motility Assays

For invasion assays, 1.0 3 105 cells were seeded in a Matrigel-coated

chamber with 8.0 mm pores (BD Biosciences); for motility assays, 5.0 3 104

cells were plated atop uncoated membranes with 8.0 mm pores (BD Biosci-

ences). Cells were seeded in serum-free media and translocated toward

complete growth media for 20 hr. Fugene6 (Roche) was used to transfect cells

24 hr prior to plating. 200 nM miRIDIAN miRNA Inhibitors (Dharmacon) were

employed to transiently inhibit miR-31. SMARTpool siRNAs against Fzd3,

ITGA5, M-RIP, MMP16, RDX, or RhoA (Dharmacon) were provided at 100 nM.

Antisense oligonucleotides and siRNAs were transfected 48 hr prior to seeding

with Oligofectamine (Invitrogen).

Anoikis Assays

Anoikis resistance was evaluated by seeding 7.5 3 104 cells in ultralow attach-

ment plates (Corning). After 24 hr of anchorage-independent culture, cells

were resuspended in 0.4% trypan blue (Sigma) and cell viability was assessed.

Animal Studies

All research involving animals complied with protocols approved by the MIT

Committee on Animal Care. For spontaneous metastasis assays, age-

matched female NOD/SCID mice (propagated on-site) were bilaterally injected

into the mammary fat pad with the indicated number of tumor cells in 1:2 Ma-

trigel (BD Biosciences) plus normal growth media. For experimental metas-

tasis assays, age-matched female NOD/SCID mice were injected with 5.0 3

105 cells (resuspended in PBS) via the tail vein. Metastasis was quantified

with a fluorescent microscope within 3 hr of specimen isolation.

Luciferase Assays

5.0 3 104 cells were cotransfected with 50 ng of the indicated pIS1 Renilla

luciferase construct and 50 ng of a pIS0 firefly luciferase normalization control.

Lysates were collected 24 hr after transfection, and Renilla and firefly lucif-

erase activities were measured with a Dual-Luciferase Reporter System

(Promega).

Immunoblots

Lysates were resolved by electrophoresis, transferred to a PVDF membrane,

and probed with antibodies against b-actin (Santa Cruz), Fzd3 (Abcam),

ITGA5 (Santa Cruz), MMP16 (Abcam), RDX (Cell Signaling), or RhoA (Santa

Cruz).

miR-31 Target Signature

Expression profiling of 295 human breast tumors (van de Vijver et al., 2002)

was used to categorize tumors as miR-31 target signature positive or negative.

Tumors were considered target signature positive or negative if the normalized

expression of multiple of the six miR-31 targets herein identified resided in the

top or bottom 15% of tumors in this cohort, respectively.

Immunohistochemistry

Detection of Ki-67 (PharMingen), MECA-32 (U. of Iowa), ITGA5 (Santa Cruz),

RDX (Santa Cruz), or RhoA (Abcam) was performed on 5 mm paraffin sections

with the indicated antibodies, Vectastain Elite ABC kits (Vector), and

ImmPACT DAB Substrate (Vector).

Statistical Analyses

Data are presented as mean ± SEM. Unless otherwise noted, Student’s t test

was used for comparisons, with p < 0.05 considered significant.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, 18

figures, 5 tables, and a video summary and can be found with this article online

at http://www.cell.com/cell/supplemental/S0092-8674(09)00390-0.
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