1,951 research outputs found
Reductions in cardiovascular, cerebrovascular, and respiratory mortality following the national Irish smoking ban: Interrupted time-series analysis
Copyright @ 2013 Stallings-Smith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Previous studies have shown decreases in cardiovascular mortality following the implementation of comprehensive smoking bans. It is not known whether cerebrovascular or respiratory mortality decreases post-ban. On March 29, 2004, the Republic of Ireland became the first country in the world to implement a national workplace smoking ban. The aim of this study was to assess the effect of this policy on all-cause and cause-specific, non-trauma mortality. Methods: A time-series epidemiologic assessment was conducted, utilizing Poisson regression to examine weekly age and gender-standardized rates for 215,878 non-trauma deaths in the Irish population, ages ≥35 years. The study period was from January 1, 2000, to December 31, 2007, with a post-ban follow-up of 3.75 years. All models were adjusted for time trend, season, influenza, and smoking prevalence. Results: Following ban implementation, an immediate 13% decrease in all-cause mortality (RR: 0.87; 95% CI: 0.76-0.99), a 26% reduction in ischemic heart disease (IHD) (RR: 0.74; 95% CI: 0.63-0.88), a 32% reduction in stroke (RR: 0.68; 95% CI: 0.54-0.85), and a 38% reduction in chronic obstructive pulmonary disease (COPD) (RR: 0.62; 95% CI: 0.46-0.83) mortality was observed. Post-ban reductions in IHD, stroke, and COPD mortalities were seen in ages ≥65 years, but not in ages 35-64 years. COPD mortality reductions were found only in females (RR: 0.47; 95% CI: 0.32-0.70). Post-ban annual trend reductions were not detected for any smoking-related causes of death. Unadjusted estimates indicate that 3,726 (95% CI: 2,305-4,629) smoking-related deaths were likely prevented post-ban. Mortality decreases were primarily due to reductions in passive smoking. Conclusions: The national Irish smoking ban was associated with immediate reductions in early mortality. Importantly, post-ban risk differences did not change with a longer follow-up period. This study corroborates previous evidence for cardiovascular causes, and is the first to demonstrate reductions in cerebrovascular and respiratory causes
Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice
Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several
hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA
Improved Measurements of Partial Rate Asymmetry in B -> h h Decays
We report improved measurements of the partial rate asymmetry (Acp) in B -> h
h decays with 140fb^-1 of data collected with the Belle detector at the KEKB
e+e- collider. Here h stands for a charged or neutral pion or kaon and in total
five decay modes are included: K-+ pi+-, K0s pi-+, K-+ pi0, pi-+ pi0 and K0s
pi0. The flavor of the last decay mode is determined from the accompanying B
meson. Using a data sample 4.7 times larger than that of our previous
measurement, we find Acp(K-+ pi+-) -0.088+-0.035+-0.013, 2.4 sigma from zero.
Results for other decay modes are also presented.Comment: 9 pages, 1 figur
Video-tracking and On-plant Tests Show Cry1Ab Resistance Influences Behavior and Survival of Neonate Ostrinia nubilalis Following Exposure to Bt Maize
To examine how resistance to Bacillus thuringiensis (Bt) toxins influences movement and survival of European corn borer (Ostrinia nubilalis [Hübner]) neonates, the responses of Cry1Ab-resistant , -susceptible, and hybrid (F1) larvae were examined using two different techniques. First, using an automated video-tracking system, aspects of O. nubilalis movement were quantified in the presence of artificial diet incorporating 50% non-Bt or insect-resistant Cry1Ab maize tissue. Second, O. nubilalis dispersal and survival were measured 48–72 h after hatching on a Cry1Ab maize plant surrounded by two non-Bt maize plants. Video tracking indicated the presence of Cry1Ab tissue increased the total distance moved (m), time moving (%), and time away from the diet (%) for O. nubilalis while decreasing meander (degrees/cm). However, resistant larvae showed reduced movement and increased meander (≈localized searching) relative to susceptible or hybrid larvae on diet incorporating Cry1Ab tissue. Conversely, when placed onto Cry1Ab maize plants, resistant larvae were more likely than susceptible O. nubilalis to disperse onto adjacent non-Bt plants. The difference in on-plant dispersal seems to reflect greater survival after toxin exposure for resistant larvae rather than increased activity. These results suggest that simplified ‘Petri dish’ tests may not be predictive of larval movement among non-Bt and insect-resistant Bt maize plants. Because models of O. nubilalis resistance evolution incorporate various movement and survival parameters, improved data for on-plant behavior and survival of Bt- resistant , -susceptible, and hybrid larvae should help preserve the efficacy of transgenic insect-resistant maize
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
International Veterinary Epilepsy Task Force Consensus Proposal: Outcome of therapeutic interventions in canine and feline epilepsy
Common criteria for the diagnosis of drug resistance and the assessment of outcome are needed urgently as a prerequisite for standardized evaluation and reporting of individual therapeutic responses in canine epilepsy. Thus, we provide a proposal for the definition of drug resistance and partial therapeutic success in canine patients with epilepsy. This consensus statement also suggests a list of factors and aspects of outcome, which should be considered in addition to the impact on seizures. Moreover, these expert recommendations discuss criteria which determine the validity and informative value of a therapeutic trial in an individual patient and also suggest the application of individual outcome criteria. Agreement on common guidelines does not only render a basis for future optimization of individual patient management, but is also a presupposition for the design and implementation of clinical studies with highly standardized inclusion and exclusion criteria. Respective standardization will improve the comparability of findings from different studies and renders an improved basis for multicenter studies. Therefore, this proposal provides an in-depth discussion of the implications of outcome criteria for clinical studies. In particular ethical aspects and the different options for study design and application of individual patient-centered outcome criteria are considered
Discovery and characterization of chromatin states for systematic annotation of the human genome
A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal 'chromatin states' in human T cells, based on recurrent and spatially coherent combinations of chromatin marks. We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, large-scale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.National Science Foundation (U.S.). (Award 0905968)National Human Genome Research Institute (U.S.) (Award U54-HG004570)National Human Genome Research Institute (U.S.) (Award RC1-HG005334
Genomic analysis of the function of the transcription factor gata3 during development of the Mammalian inner ear
We have studied the function of the zinc finger transcription factor gata3 in auditory system development by analysing temporal profiles of gene expression during differentiation of conditionally immortal cell lines derived to model specific auditory cell types and developmental stages. We tested and applied a novel probabilistic method called the gamma Model for Oligonucleotide Signals to analyse hybridization signals from Affymetrix oligonucleotide arrays. Expression levels estimated by this method correlated closely (p<0.0001) across a 10-fold range with those measured by quantitative RT-PCR for a sample of 61 different genes. In an unbiased list of 26 genes whose temporal profiles clustered most closely with that of gata3 in all cell lines, 10 were linked to Insulin-like Growth Factor signalling, including the serine/threonine kinase Akt/PKB. Knock-down of gata3 in vitro was associated with a decrease in expression of genes linked to IGF-signalling, including IGF1, IGF2 and several IGF-binding proteins. It also led to a small decrease in protein levels of the serine-threonine kinase Akt2/PKB beta, a dramatic increase in Akt1/PKB alpha protein and relocation of Akt1/PKB alpha from the nucleus to the cytoplasm. The cyclin-dependent kinase inhibitor p27(kip1), a known target of PKB/Akt, simultaneously decreased. In heterozygous gata3 null mice the expression of gata3 correlated with high levels of activated Akt/PKB. This functional relationship could explain the diverse function of gata3 during development, the hearing loss associated with gata3 heterozygous null mice and the broader symptoms of human patients with Hearing-Deafness-Renal anomaly syndrome
Development and Validity of the Rating-of-Fatigue Scale
Objective: The purpose of these experiments was to develop a rating-of-fatigue (ROF) scale capable of tracking the intensity of perceived fatigue in a variety of contexts. Methods: Four experiments were carried out. The first provided the evidential basis for the construction of the ROF scale. The second tested the face validity of the ROF, and the third tested the convergent and divergent validity of the ROF scale during ramped cycling to exhaustion and 30 min of resting recovery. The final experiment tested the convergent validity of the ROF scale with time of day and physical activity (accelerometer counts) across a whole week. Results: Modal selections of descriptions and diagrams at different levels of exertion and recovery were found during Experiment 1 upon which the ROF scale was constructed and finalised. In Experiment 2, a high level of face validity was indicated, in that ROF was reported to represent fatigue rather than exertion. Descriptor and diagrammatic elements of ROF reportedly added to the coherence and ease of use of the scale. In Experiment 3, high convergence between ROF and various physiological measures were found during exercise and recovery (heart rate, blood lactate concentration, oxygen uptake, carbon dioxide production, respiratory exchange ratio and ventilation rate were all P < 0.001). During ramped cycling to exhaustion ROF and RPE did correspond (P < 0.0001) but not during recovery, demonstrating discriminant validity. Experiment 4 found ROF to correspond with waking time during each day (Mon–Sun all P < 0.0001) and with physical activity (accelerometer count) (Mon–Sun all P < 0.001). Conclusions: The ROF scale has good face validity and high levels of convergent validity during ramped cycling to exhaustion, resting recovery and daily living activities. The ROF scale has both theoretical and applied potential in understanding changes in fatigue in a variety of contexts
- …
