9 research outputs found

    Astrophysics with the Laser Interferometer Space Antenna

    No full text
    submitted to Living Reviews In RelativityLaser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy as it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and other space-based instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA's first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed: ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or intermediate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help make progress in the different areas. New research avenues that LISA itself, or its joint exploitation with studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe

    Astrophysics with the Laser Interferometer Space Antenna

    Get PDF
    submitted to Living Reviews In RelativityLaser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy as it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and other space-based instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA's first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed: ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or intermediate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help make progress in the different areas. New research avenues that LISA itself, or its joint exploitation with studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe

    Astrophysics with the Laser Interferometer Space Antenna

    No full text

    Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    Get PDF
    <p>The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.</p>

    Time series of oceanographic parameters measured at the Lacaze-Duthiers Canyon (LDC) and the open-sea convection region in the Gulf of Lion (LION) from January 2008 to June 2010.

    No full text
    <p>(<b>a</b>) Potential temperature at 500 and 1,000 m depth at the LDC mooring site and (<b>b</b>) from various water depths at the LION site, jointly with (<b>c</b>) salinity at 2,300 m depth, (<b>d</b>) horizontal current speed and (<b>e</b>) vertical current speed from various water depths at the LION site. The four levels of temperature measurements at LION presented here are a sub-set of measurement depths (see Fig. S1). Essentially stable temperatures in the deepest layers in 2008 show that open-sea convection reached only 700 m and did not modify the deep water in the study area. In contrast, strong convection events, reaching 2,300 m depth, occurred during February-March 2009 and 2010 with an abrupt cooling of the upper water column and an increase in temperature and salinity in the deep layers. A concurrent increase in current speed was also noticed in winter 2009 and 2010. The 5-month long data gap in 2009 is due to a damaging of the mooring line during the April 2009 recovery, which induced a postponement of its redeployment to September 2009.</p
    corecore