66 research outputs found

    Complement activation retards resolution of acute ischemic renal failure in the rat

    Get PDF
    Complement activation retards resolution of acute ischemic renal failure in the rat. We investigated the role of complement activation on the resolution of acute ischemic renal failure in the rat. Acute renal failure was induced by clamping of the renal arteries of Sprague-Dawley rats for 45 minutes (Day 0). On subsequent days, groups of rats with acute renal failure were exposed to daily zymosan infusion (an activator of the complement system), or to blood incubated with cuprophane (CUP) or polyacrylonitrile (PAN) dialysis membranes. We serially measured the change in BUN daily, glomerular filtration rate and 24-hour proteinuria on Day 3 and Day 5 following ischemia. On Day 6, the animals were sacrificed and their kidneys examined histologically. Zymosan and cuprophane exposed rats had a significant delay in the recovery of renal failure, reduced glomerular filtration rate, and histologically had more neutrophil infiltration than control or PAN exposed animals. To investigate the potential pathophysiology of these observations, we assessed the response of zymosan-exposed rats to infusion of deferoxamine (DFO), a potent inhibitor of hydroxyl radical formation (OH•). Infusion of DFO prior to zymosan significantly improved recovery of renal function. We also measured urinary thromboxane B2 levels in these groups of rats. While the groups of rats exposed to zymosan had the highest levels of thromboxane B2, these levels were not different between the groups exposed to zymosan alone, or to zymosan and DFO. These observations suggest a role for hydroxyl radicals in the prolongation of renal failure in this model. Taken together, these findings may have implications for the dialytic intervention in patients with acute renal failure

    Comparison of methods to predict equilibrated Kt/V in the HEMO Pilot Study

    Get PDF
    Comparison of methods to predict equilibrated Kt/V in the HEMO Pilot Study. The ongoing HEMO Study, a National Institutes of Health (NIH) sponsored multicenter trial to test the effects of dialysis dosage and membrane flux on morbidity and mortality, was preceded by a Pilot Study (called the MMHD Pilot Study) designed to test the reliability of methods for quantifying hemodialysis. Dialysis dose was defined by the fractional urea clearance per dialysis determined by the predialysis BUN and the equilibrated postdialysis BUN after urea rebound is completed (eKt/V). In the Pilot Study the blood side standard for eKt/V was calculated from the predialysis, postdialysis, and 30-minute postdialysis BUN. Four techniques of approximating eKt/V that eliminated the requirement for the 30-minute postdialysis sample were also evaluated. The first adjusted the single compartment Kt/V using a linear equation with slope based on the relative rate of solute removal (K/V) to predict eKt/V (rate method). The second and third techniques used equations or mathematical curve fitting algorithms to fit data that included one or more samples drawn during dialysis (intradialysis methods). The fourth technique (dialysate-side) predicted eKt/V from an analysis of the time-dependent profile of dialysate urea nitrogen concentrations (BioStat method; Baxter Healthcare, Inc., Round Lake, IL, USA). The Pilot Study demonstrated the feasibility of conventional and high dose targets of about 1.0 and 1.4 for eKt/V. Based on the blood side standard method, the mean ± SD eKt/V for patients randomized to these targets was 1.14 ± 0.11 and 1.52 ± 0.15 (N = 19 and 16 patients, respectively). Single-pool Kt/Vs were about 0.2 Kt/V units higher. Results were similar when eKt/V was based on dialysate side measurements: 1.10 ± 0.11 and 1.50 ± 0.11. The approximations of eKt/V by the three blood side methods that eliminated the delayed 30-minute post-dialysis sample correlated well with eKt/V from the standard blood side method: r = 0.78 and 0.76 for the single-sample (Smye) and multiple-sample intradialysis methods (N = 295 and 229 sessions, respectively) and 0.85 for the rate method (N = 295). The median absolute difference between eKt/V computed using the standard blood side method and eKt/V from the four other methods ranged from 0.064 to 0.097, with the smallest difference (and hence best accuracy) for the rate method. The results suggest that, in a dialysis patient population selected for ability to achieve an equilibrated Kt/V of about 1.45 in less than a 4.5 hour period, use of the pre and postdialysis samples and a kinetically derived rate equation gives reasonably good prediction of equilibrated Kt/V. Addition of one or more intradialytic samples does not appear to increase accuracy of predicting the equilibrated Kt/V in the majority of patients. A method based on dialysate urea analysis and curve-fitting yields results for equilibrated Kt/V that are similar to those obtained using exclusively blood-based techniques of kinetic modeling

    Effect of dietary protein restriction on nutritional status in the Modification of Diet in Renal Disease Study

    Get PDF
    Effect of dietary protein restriction on nutritional status in the Modification of Diet in Renal Disease Study. The safety of dietary protein and phosphorous restriction was evaluated in the Modification of Diet in Renal Disease (MDRD) Study. In Study A, 585 patients with a glomerular filtration rate (GFR) of 25 to 55 ml/min/1.73m2 were randomly assigned to a usual-protein diet (1.3 g/kg/day) or a low-protein diet (0.58 g/kg/day). In Study B, 255 patients with a GFR of 13 to 24 ml/min/1.73m2 were randomly assigned to the low-protein diet or a very-low-protein diet (0.28 g/kg/day), supplemented with a ketoacid-amino acid mixture (0.28 g/kg/day). The low-protein and very-low-protein diets were also low in phosphorus. Mean duration of follow-up was 2.2 years in both studies. Protein and energy intakes were lower in the low-protein and very-low-protein diet groups than in the usual-protein group. Two patients in Study B reached a “stop point” for malnutrition. There was no difference between randomized groups in the rates of death, first hospitalizations, or other “stop points” in either study. Mean values for various indices of nutritional status remained within the normal range during follow-up in each diet group. However, there were small but significant changes from baseline in some nutritional indices, and differences between the randomized groups in some of these changes. In the low-protein and very-low-protein diet groups, serum albumin rose, while serum transferrin, body wt, percent body fat, arm muscle area and urine creatinine excretion declined. Combining patients in both diet groups in each study, a lower achieved protein intake (from food and supplement) was not correlated with a higher rate of death, hospitalization or stop points, or with a progressive decline in any of the indices of nutritional status after controlling for baseline nutritional status and follow-up energy intake. These analyses suggest that the low-protein and very-low-protein diets used in the MDRD Study are safe for periods of two to three years. Nonetheless, both protein and energy intake declined and there were small but significant declines in various indices of nutritional status. These declines are of concern because of the adverse effect of protein calorie malnutrition in patients with end-stage renal disease. Physicians who prescribe low-protein diets must carefully monitor patients' protein and energy intake and nutritional status

    Blood transfusion in the critically ill: does storage age matter?

    Get PDF
    Morphologic and biochemical changes occur during red cell storage prior to product expiry, and these changes may hinder erythrocyte viability and function following transfusion. Despite a relatively large body of literature detailing the metabolic and structural deterioration that occurs during red cell storage, evidence for a significant detrimental clinical effect related to the transfusion of older blood is relatively less conclusive, limited primarily to observations in retrospective studies. Nonetheless, the implication that the transfusion of old, but not outdated blood may have negative clinical consequences demands attention. In this report, the current understanding of the biochemical and structural changes that occur during storage, known collectively as the storage lesion, is described, and the clinical evidence concerning the detrimental consequences associated with the transfusion of relatively older red cells is critically reviewed. Although the growing body of literature demonstrating the deleterious effects of relatively old blood is compelling, it is notable that all of these reports have been retrospective, and most of these studies have evaluated patients who received a mixture of red cell units of varying storage age. Until prospective studies have been completed and produce confirmative results, it would be premature to recommend any modification of current transfusion practice regarding storage age

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases

    Get PDF
    Biomarkers of disease activity have come into wide use in the study of mechanisms of human disease and in clinical medicine to both diagnose and predict disease course; as well as to monitor response to therapeutic intervention. Here we review biomarkers of the involvement of mast cells, basophils, and eosinophils in human allergic inflammation. Included are surface markers of cell activation as well as specific products of these inflammatory cells that implicate specific cell types in the inflammatory process and are of possible value in clinical research as well as within decisions made in the practice of allergy-immunology

    GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility

    Training programmers for diverse goals

    No full text
    corecore