51 research outputs found

    All You Need to Know and More about the Diagnosis and Management of Rare Mold Infections

    Get PDF
    Invasive mold infections caused by molds other than Aspergillus spp. or Mucorales are emerging. The reported prevalences of infection due to these rare fungal pathogens vary among geographic regions, driven by differences in climatic conditions, susceptible hosts, and diagnostic capabilities. These rare molds-Fusarium, Lomentospora, and Scedosporium species and others-are difficult to detect and often show intrinsic antifungal resistance. Now, international societies of medical mycology and microbiology have joined forces and created the Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology (published in Lancet Infect Dis, https://doi.org/10.1016/S1473-3099(20)30784-2), with the goal of improving the diagnosis, treatment, prevention, and survival of persons with rare mold infections. The guideline provides cutting-edge guidance for the correct utilization and application of established and new diagnostic and therapeutic options

    Phenotypic and genomic profiling of Staphylococcus argenteus in Canada and the United States and recommendations for clinical result reporting

    Get PDF
    Staphylococcus argenteus is a newly described species, formerly known as S. aureus clonal complex 75 (CC75). Here, we describe the largest collection of S. argenteus isolates in North America, highlighting identification challenges. We present phenotypic and genomic characteristics and provide recommendations for clinical reporting. Between 2017 and 2019, 22 isolates of S. argenteus were received at 2 large reference laboratories for identification. Identification with routine methods (biochemical, matrix-assisted laser desorption ionization–time of flight mass spectrometry [MALDI-TOF MS], 16S rRNA gene analysis) proved challenging to confidently distinguish these isolates from S. aureus. Whole-genome sequencing analysis was employed to confirm identifications. Using several different sequence-based analyses, all clinical isolates under investigation were confirmed to be S. argenteus with clear differentiation from S. aureus. Seven of 22 isolates were recovered from sterile sites, 11 from nonsterile sites, and 4 from surveillance screens. While sequence types ST1223/coa type XV, ST2198/coa type XIV, and ST2793/coa type XId were identified among the Canadian isolates, the majority of isolates (73%) belonged to multilocus sequence types (MLST) ST2250/coa type XId and exhibited a high degree of homology at the genomic level. Despite this similarity, 5 spa types were identified among ST2250 isolates, demonstrating some diversity between strains. Several isolates carried mecA, as well as other resistance and virulence determinants (e.g., PVL, TSST-1) commonly associated with S. aureus. Based on our findings, the growing body of literature on S. argenteus, the potential severity of infections, and possible confusion associated with reporting, including use of incorrect breakpoints for susceptibility results, we make recommendations for clinical laboratories regarding this organism

    Understanding and application of daptomycin-susceptible dose-dependent category for Enterococcus: A mixed-methods study

    Get PDF
    Background: In 2018, the Clinical Microbiology Laboratory at our institution adopted updated daptomycin Methods: This mixed-methods study combined a clinician survey with a retrospective pre-post prescribing analysis. An 8-question survey was distributed to infectious diseases (ID) and internal medicine (IM) clinicians. A retrospective chart review of hospitalized adults with infections due to Results: Survey response rates were 40 of 98 (41%) for IM and 22 of 34 (65%) for ID clinicians. ID clinicians scored significantly higher than IM clinicians in knowledge of SDD. Chart review of 474 patients (225 pre- vs 249 post-SDD) showed that daptomycin dosage following susceptibility testing was significantly higher post-SDD compared with pre-SDD (8.5 mg/kg vs 6.4 mg/kg; Conclusions: The survey revealed that ID clinicians placed more importance on and had more confidence in the SDD category over IM clinicians. SDD reporting was associated with a change in definitive daptomycin dosing. ID specialist involvement is recommended in the care of infections due to enterococci for which daptomycin is reported as SDD given their expertise

    When Should Asymptomatic Persons Be Tested for COVID-19?

    Get PDF
    On August 24, 2020, the Centers for Disease Control and Prevention (CDC) updated its website to highlight that asymptomatic individuals, even those with exposure to a COVID-19 positive contact, do not necessarily need to be tested unless they have medical conditions associated with increased risk of severe illness from COVID-19. The CDC subsequently updated its guidance on September 19, 2020 to support testing of asymptomatic persons, including close contacts of persons with documented SARS-CoV-2 infection. In this editorial, the American Society for Microbiology Clinical and Public Health Microbiology Committee's Subcommittee on Laboratory Practices comments on testing of asymptomatic individuals relative to current medical knowledge of the virus and mitigation measures. Specific points are provided concerning such testing when undertaking contact tracing and routine surveillance. Limitations to consider when testing asymptomatic persons are covered, including the need to prioritize testing of contacts of positive COVID-19 cases. We urge the CDC to consult with primary stakeholders of COVID-19 testing when making such impactful changes in testing guidance

    Practical guidance for clinical microbiology laboratories: Viruses causing acute respiratory tract infections

    Get PDF
    Respiratory viral infections are associated with a wide range of acute syndromes and infectious disease processes in children and adults worldwide. Many viruses are implicated in these infections, and these viruses are spread largely via respiratory means between humans but also occasionally from animals to humans. This article is an American Society for Microbiology (ASM)-sponsored Practical Guidance for Clinical Microbiology (PGCM) document identifying best practices for diagnosis and characterization of viruses that cause acute respiratory infections and replaces the most recent prior version of the ASM-sponsored Cumitech 21 document, Laboratory Diagnosis of Viral Respiratory Disease, published in 1986. The scope of the original document was quite broad, with an emphasis on clinical diagnosis of a wide variety of infectious agents and laboratory focus on antigen detection and viral culture. The new PGCM document is designed to be used by laboratorians in a wide variety of diagnostic and public health microbiology/virology laboratory settings worldwide. The article provides guidance to a rapidly changing field of diagnostics and outlines the epidemiology and clinical impact of acute respiratory viral infections, including preferred methods of specimen collection and current methods for diagnosis and characterization of viral pathogens causing acute respiratory tract infections. Compared to the case in 1986, molecular techniques are now the preferred diagnostic approaches for the detection of acute respiratory viruses, and they allow for automation, high-throughput workflows, and near-patient testing. These changes require quality assurance programs to prevent laboratory contamination as well as strong preanalytical screening approaches to utilize laboratory resources appropriately. Appropriate guidance from laboratorians to stakeholders will allow for appropriate specimen collection, as well as correct test ordering that will quickly identify highly transmissible emerging pathogens

    Endemic Acinetobacter baumannii in a New York Hospital

    Get PDF
    Acinetobacter baumannii is an increasingly multidrug-resistant (MDR) cause of hospital-acquired infections, often associated with limited therapeutic options. We investigated A. baumannii isolates at a New York hospital to characterize genetic relatedness.Thirty A. baumannii isolates from geographically-dispersed nursing units within the hospital were studied. Isolate relatedness was assessed by repetitive sequence polymerase chain reaction (rep-PCR). The presence and characteristics of integrons were assessed by PCR. Metabolomic profiles of a subset of a prevalent strain isolates and sporadic isolates were characterized and compared.We detected a hospital-wide group of closely related carbapenem resistant MDR A. baumannii isolates. Compared with sporadic isolates, the prevalent strain isolates were more likely to be MDR (p = 0.001). Isolates from the prevalent strain carried a novel Class I integron sequence. Metabolomic profiles of selected prevalent strain isolates and sporadic isolates were similar.The A. baumannii population at our hospital represents a prevalent strain of related MDR isolates that contain a novel integron cassette. Prevalent strain and sporadic isolates did not segregate by metabolomic profiles. Further study of environmental, host, and bacterial factors associated with the persistence of prevalent endemic A. baumannii strains is needed to develop effective prevention strategies

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    The Human Phenotype Ontology in 2024: phenotypes around the world.

    Get PDF
    The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    Reply to Yu and Stout

    No full text

    Importance of Fungal Histopathology in Immunocompromised Pediatric Patients

    No full text
    corecore