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ABSTRACT Staphylococcus argenteus is a newly described species, formerly known
as S. aureus clonal complex 75 (CC75). Here, we describe the largest collection of S.
argenteus isolates in North America, highlighting identification challenges. We pres-
ent phenotypic and genomic characteristics and provide recommendations for clini-
cal reporting. Between 2017 and 2019, 22 isolates of S. argenteus were received at 2
large reference laboratories for identification. Identification with routine methods
(biochemical, matrix-assisted laser desorption ionization–time of flight mass spec-
trometry [MALDI-TOF MS], 16S rRNA gene analysis) proved challenging to confidently
distinguish these isolates from S. aureus. Whole-genome sequencing analysis was
employed to confirm identifications. Using several different sequence-based analyses,
all clinical isolates under investigation were confirmed to be S. argenteus with clear
differentiation from S. aureus. Seven of 22 isolates were recovered from sterile sites,
11 from nonsterile sites, and 4 from surveillance screens. While sequence types
ST1223/coa type XV, ST2198/coa type XIV, and ST2793/coa type XId were identified
among the Canadian isolates, the majority of isolates (73%) belonged to multilocus
sequence types (MLST) ST2250/coa type XId and exhibited a high degree of homol-
ogy at the genomic level. Despite this similarity, 5 spa types were identified among
ST2250 isolates, demonstrating some diversity between strains. Several isolates car-
ried mecA, as well as other resistance and virulence determinants (e.g., PVL, TSST-1)
commonly associated with S. aureus. Based on our findings, the growing body of lit-
erature on S. argenteus, the potential severity of infections, and possible confusion
associated with reporting, including use of incorrect breakpoints for susceptibility
results, we make recommendations for clinical laboratories regarding this organism.

KEYWORDS Staphylococcus aureus clonal complex, Staphylococcus argenteus, whole-
genome sequencing, sequence types, MALDI-TOF MS, bacterial identification,mecA

S taphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is one of the
best-studied and -described bacterial pathogens. It is well known to colonize

humans and animals and to cause a range of skin and soft tissue infections, severe
invasive diseases, and toxin-mediated illnesses (1). The rise and dissemination of MRSA
is a major global antimicrobial resistance threat with significant clinical and infection
prevention and control (IPAC) implications (2). To properly support clinical decision
making and IPAC interventions, timely and accurate identification of S. aureus/MRSA in
the clinical laboratory is imperative.
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There are many clonal complexes and sequence types of S. aureus which are often
used to describe the molecular epidemiology of this pathogen. In 2015, results from
investigations into two staphylococcal species which were almost identical to S. aureus
phenotypically and by 16S rRNA gene sequences gave rise to the formal descriptions
of Staphylococcus argenteus sp. nov., formerly known as S. aureus clonal complex 75
(CC75), and Staphylococcus schweitzeri sp. nov. (3, 4). S. argenteus and S. schweitzeri
each have distinct multilocus sequence types (MLST), and genomic sequence analysis
clearly demonstrates that they are phylogenetically divergent from S. aureus, display-
ing less than 95% average nucleotide identity (ANI) with one another and a predicted
DNA-DNA hybridization of less than 70% between the species (3, 5–8). S. argenteus and
S. schweitzeri have distinct spectral profiles on some research applications and/or data-
bases of matrix-assisted laser desorption ionization–time of flight mass spectrometry
(MALDI-TOF MS), as well as unique cellular fatty acid signatures compared to those of
S. aureus. While S. aureus, S. argenteus, and S. schweitzeri have nearly identical 16S rRNA
gene sequences to one another, there are considerable differences in nuc, which is im-
portant given that some of these differences occur in areas of the gene often used as
primer binding sites in PCR assays designed to detect S. aureus (3, 8–10).

S. schweitzeri is considered a zoonotic agent primarily associated with fruit bats
(Eidolon helvum) and monkeys (Cercopithecus ascanius) in Africa (4, 11); that no human
clinical cases have been reported to date suggests that this organism may inhabit a
separate ecological niche from that of S. aureus.

In contrast, S. argenteus has now been established as an effective colonizer and
pathogen of humans (6, 12–20). Initial reports of S. argenteus, both methicillin-suscepti-
ble and methicillin-resistant, were from Australia, the Pacific Islands, and Thailand and
were thought to be geographically restricted (3, 5, 6, 13, 21–23). Based on early clinical
observations, S. argenteus was considered less likely to cause nosocomial infections
than S. aureus, appearing to be predominantly associated with community-onset su-
perficial skin lesions (21). Based on this observation and murine studies, and because S.
argenteus lacked some putative S. aureus virulence genes such as staphyloxanthin, the
initial assessment was that S. argenteus was less virulent than S. aureus (7, 21, 24).

Awareness of S. argenteus was heightened after the formal description of the spe-
cies as well as with the addition of the S. argenteus and S. schweitzeri spectra to the
database of one commonly used commercial MALDI-TOF MS system (RUO database
2018, V8.0, 7854 Bruker; Bruker Daltonics). In the last few years, increased numbers of
clinical reports and descriptions of S. argenteus resulted in increased attention on this
organism and a recognition of a possible global distribution (12, 14–16, 25–30). It is
now also evident that S. argenteus can cause serious invasive disease, including bacter-
emia, bone and joint infection, and purulent lymphadenitis, and has been directly
linked to patient deaths (13, 16, 18, 19, 30). Like its relative S. aureus, S. argenteus has
been shown to cause toxin-mediated foodborne illnesses (15, 20). In addition to com-
munity-associated spread, reports have documented nosocomial spread of S. argenteus
(13, 24). Recent studies have also described strains of S. argenteus harboring traditional
S. aureus virulence factors such as Panton-Valentine leukocidin (PVL), enterotoxins, and
toxic shock syndrome toxin-1 (TSST-1), among others (12, 14, 20, 25, 28, 31, 32).

Considering the clinical and IPAC significance of S. argenteus, this organism should
be correctly identified so that cases are not missed. For greater understanding of clini-
cal, microbiological, and epidemiologic similarities and differences between S. argen-
teus and S. aureus, the two species should be distinguished. Despite the addition of S.
argenteus spectra to at least one commercial MALDI-TOF MS database, confirmation of
identification of and distinction from S. aureus and S. schweitzeri in the clinical labora-
tory is not straightforward. Laboratories may be identifying S. argenteus as S. aureus, as
these species share equivalent reactions to most key biochemical tests traditionally
used for characterization, such as catalase and tube coagulase positivity and beta-he-
molysis on blood agar (3). One exception is that while S. aureus is often (but not exclu-
sively) golden in color, S. argenteus colonies have been found to be nonpigmented,
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appearing white/silver due to the absence of the staphyloxanthin gene cluster
(crtOPQMN) which encodes carotenoid pigment (7). As mentioned previously, 16S
rRNA gene sequence analysis is not able to discriminate between S. argenteus, S. aur-
eus, and S. schweitzeri.

Here, our objective was to verify the identifications of S. argenteus identified by
MALDI-TOF MS and characterize the isolates. Using several identification methods,
including whole-genome sequencing (WGS), we describe initial isolates of S. argenteus
received at two large North American microbiology reference laboratories, one in
Canada and one in the United States. The description of the microbiological character-
istics, including antimicrobial susceptibility profiles, of these North American isolates as
well as basic clinical details of the patients contributes to a growing understanding of
the epidemiology and the clinical presentations of this organism. Based on our labora-
tory experience as well as the growing body of literature on the clinical and IPAC sig-
nificance of S. argenteus, we provide recommendations as to how to report this orga-
nism in the clinical laboratory, addressing breakpoint challenges with S. argenteus.

MATERIALS ANDMETHODS
Specimen collections. This study involved a collection of 22 clinical isolates of S. argenteus received

between 2017 and 2019 by two large North American reference laboratories (Public Health Ontario
[PHO], Toronto, ON, Canada [n= 16] and Mayo Clinic, Rochester, Minnesota, USA [n= 6]), along with
strains S. argenteus DSM 28299T/MSHR1132T and S. schweitzeri DSM 28300T/FSA084T. Clinical isolates
were received at the reference laboratories for identification and antibiotic susceptibility testing.
Routine identification methods for Staphylococcus and related species were conducted, including tube
coagulase, pyrrolidonyl aminopeptidase test (PYR), bacitracin disk, and MALDI-TOF MS (Bruker, BioTyper,
databases V7.0 [7311] used 2017, V8.0 [7854] used 2018, and V9.0 [8468] used 2019) (Table 1). Of note,
BioTyper RUO database V7.0 (7311) did not include S. argenteus or S. schweitzeri for which spectra were
added in the V8.0 (7854) update. For closely related organisms, MALDI-TOF MS (Bruker, BioTyper) can
occasionally result in multiple species scoring at or above the cutoff of .2.0 (confident to the species
level). Different approaches were employed by each laboratory to avoid potential misidentifications that
can occur as a result of reporting only the top-scoring identification by MALDI-TOF MS. At PHO, 16S
rRNA gene PCR and sequence analysis were performed using universal primer pair 8FPL and 806R (33).
16S rRNA gene sequences were subjected to a BLAST search against the NCBI GenBank type strain and
open nucleotide databases (34) with interpretation criteria described in the Clinical and Laboratory
Standards Institute (CLSI) document MM18-A used to identify the isolates (35). At Mayo Clinic, if multiple
species had scores of $2.0, a score separation of at least 10% was required between the top match and
additional species in order to report the top-scoring organism to the species level. If a $10% score sepa-
ration was not observed, organisms were only reported to the genus level. This 10% differential rule, or
separation rule, has been used by other groups to aid in differentiating closely related organisms (36,
37).

The S. argenteus strain DSM 28299T (MSHR1132T) and the S. schweitzeri strain DSM 28300T (FSA084T),
inoculated at Mayo Clinic, were used as controls. All isolates were frozen and maintained at280°C.

Basic characteristics of the patients, including sex, age range, month and year of collection, geo-
graphic region, and specimen type, were recorded (Table 1). This work was approved by the PHO
Research Office’s Ethics Review Board, and a Privacy Impact Assessment was completed. This work was
also approved by Mayo Clinic’s Institutional Review Board.

Antimicrobial susceptibility testing and determination of MICs. Antimicrobial susceptibility test-
ing was performed by agar dilution according to CLSI guidelines on all isolates to determine MICs (Table
2) (38). D-test for inducible clindamycin resistance and penicillin zone edge test (inducible beta-lacta-
mase) were also performed in accordance with CLSI M100 recommendations (39). Cefoxitin disk (30mg)
diffusion and a PCR test to detect mecA (with nuc as a positive control for S. aureus) were also performed
(10, 39).

Whole-genome sequencing. Genomic DNA from colonies were extracted and purified using a
QiaAmp DNA minikit (Qiagen, Valencia, CA) or Zymo Research Quick-DNA Fungal/Bacterial MiniPrep kit
(Zymo Research Corp., CA) from an overnight culture grown aerobically on sheep blood agar according
to the manufacturer’s protocol. The quality of isolated DNA was analyzed using gel electrophoresis and
quantified using Qubit 2.0 (Invitrogen, Waltham, MA) fluorometer.

DNA libraries were prepared and multiplexed with a unique combination of two indexes of the
Nextera XT index kit (Illumina, San Diego, CA). The sequencing library was quantified using Qubit 2.0
(Invitrogen, Waltham, MA) and qualified by Bioanalyzer (Agilent Technologies, Richardson, TX). The
library was normalized and pulled together aiming for an average coverage of 100� and sequenced on
the Illumina MiSeq platform, using Illumina MiSeq reagent kit v2 (2 � 150bp), according to the manufac-
turer’s instructions.

Genome assembly. FastQ files were imported into CLC Genomics Workbench version 8.0.1 (CLC bio,
Germantown, MD, USA). Raw reads were trimmed to remove Nextera transposase adapter sequences
and assembled using de novo assembler. Following de novo assembly, the largest contig was subjected
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to NCBI BLAST to select the closest matching complete S. argenteus genome in GenBank to serve as the
reference for reference-based assembly using CLC Genomic Workbench 8.5.3 (QIAGEN Digital Insights).

Genome analysis. The assembly was annotated using the RAST server (http://rast.nmpdr.org) (40)
for gene prediction and annotation. Genome sequencing data of each isolate was assessed for in silico
identification of MLST, SCCmec, and plasmid replicon and resistance genes using online tools such as
CARD (41), MLST-1.8 server (42), ResFinder 2.1 (43), and SCCmecFinder 1.2 server (44) available by Center
for Genomic Epidemiology (http://genomicepidemiology.org). Virulence factors (VFs) were identified by
using VFanalyzer of the virulence factor database (VFDB) (http://mgc.ac.cn/VFs/) (45). To identify plas-
mids, the genome assemblies were screened using PlasmidFinder database for plasmid replicon (rep)
genes (46).

Single nucleotide variant (SNV) analysis was conducted using a custom pipeline. Briefly, reads for all
isolates were mapped against the chromosome of the strain MSHR1132T (DSM 28299T) available in
GenBank (accession number NC_016941.1) for reference using SMALT software v 0.7.6 (https://www
.sanger.ac.uk/tool/smalt-0/). Single nucleotide polymorphism (SNP) calling was performed using
Freebayes with min-base-quality 30, min-mapping-quality 30, min-alternate-fraction 0.75, read-snp-limit
10, and min-coverage 15 (47). Additional variant confirmation was done using the SAMtools mpileup
tool (48). Repetitive regions were removed by using MUMmer (49). The meta-alignment of core informa-
tive positions (SNVs) was used to create a maximum likelihood (ML) tree using MEGA 6 (50).

A whole-genome phylogenomic approach was performed by uploading the assembled sequences
to Type Strain Genome Server (TYGS; https://tygs.dsmz.de) for a whole-genome-based phylogenetic
analysis of isolates to the most closely related genome database (51).

ANI was calculated using EZBioCloud ANI calculator (52) between assembled genomes obtained in
this study and publicly available genomes of S. argenteus MSHR1132T (accession number NC_016941.1),
S. argenteus strain XNO62 (accession number CP023076.1), S. schweitzeri NCTC 13712T (accession number
NZ_LR134304.1), and S. aureus NCTC 8325 (accession number NC_007795.1). An ANI threshold of $96%
was considered to be the cutoff for species identification, which correlates to DNA-DNA hybridization
studies (53). Whole-genome comparison was performed and visualized using the Gview tools (54).

spa typing, Sanger protocol. All S. argenteus in this study were subjected for spa sequence-based
typing using the previously published PCR primers (55). spa amplicons were sequenced with the same
primers and analyzed using the spa type finder/identifier (http://spatyper.fortinbras.us) and the Ridom
SpaServer (https://spaserver.ridom.de).

Data availability. WGS sequence data are available in the following databases. NCBI (https://www
.ncbi.nlm.nih.gov/): accession numbers QQOV00000000 (PHL3431), PUXC00000000 (PHL3432), and
QQOW00000000 (PHL3433). BioProject accession number PRJNA666697: WGS numbers JADANH000000000
(PHL6344), JADANG000000000 (PHL5740), JADANF000000000 (PHL3446), JADANE000000000 (PHL2420),
JADAND000000000 (PHL6318), JADANC000000000 (PHL8605), JADANB000000000 (PHL2411), JADANA000000000
(PHL1144), JADAMZ000000000 (PHL4815), JADAMY000000000 (PHL8642), JADAMX000000000 (PHL4226),
JADAMW000000000 (PHL4313), JADAMV000000000 (PHL4553), JADAMU000000000 (DSM 28299T),
JADAMT000000000 (DSM 28300T), JADAMS000000000 (MC2), JADAMQ000000000 (MC3), JADAMP000000000
(MC4), JADAMO000000000 (WU1), JADAMN000000000 (WU2), and JADAMR000000000 (WU3).

RESULTS
Initial description of isolates. In total, 22 isolates were received at the PHO labora-

tory (n = 16) and Mayo Clinic (n = 6) for confirmation of identification of S. aureus,
MRSA, or S. argenteus from 2017 to 2019 (Table 1). All isolates were tube coagulase
positive and PYR negative.

The initial 3 S. argenteus isolates arrived at the PHO laboratory in 2017, as MRSA
isolates (PHL3431, PHL3432, and PHL3433) for confirmation of identification. At the
time, MALDI-TOF MS provided confident identifications of S. aureus ($2.0), with
positive tube coagulase and PYR reactions; of note, the BioTyper RUO database
V7.0 (7311) used at the time did not include S. argenteus or S. schweitzeri. To deter-
mine the presence of mecA and confirm the identification of MRSA, these isolates
were run on an in-house mecA PCR assay (10). All three isolates were positive for
mecA; however, the positive control for S. aureus, nuc, was negative (Table 1). These
results prompted further investigation of the identification of the organisms, and
they were referred for WGS analysis, which determined that they were S. argenteus
(details below).

In 2018, the Bruker BioTyper RUO database was updated to include spectra for S.
argenteus and S. schweitzeri for the first time (RUO databases V8.0 [7854 MSP] and V9.0
[8468]), after which both reference laboratories were technically able to use MALDI-
TOF MS to identify S. argenteus and S. schweitzeri. When the single S. schweitzeri strain
available in this study (DSM 28300T) was tested by MALDI-TOF MS using the new data-
bases, it resulted in a single identification of $2.0 of S. schweitzeri; of note, this same
strain was used to produce the spectrum in the library (Table 1). However, use of the
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updated databases challenged with S. argenteus typically resulted in multiple species
(S. aureus, S. argenteus, and S. schweitzeri) with high ($2.0) scores (Table 1), resulting in
an inability to confidently identify the organism to species level. This prompted addi-
tional testing to confirm identification, including attempts at using 16S rRNA gene
sequence analysis.

Partial 16S rRNA gene PCR and sequence analysis of these isolates were not able to
reliably differentiate between S. aureus, S. argenteus, and S. schweitzeri as well as a
strain of Staphylococcus haemolyticus (accession number Z26896.1); all had $99.0%
homology to reference strain deposits within NCBI GenBank for these species (Table 1).
Of note, S. haemolyticus could be ruled out as it is coagulase negative, and Z26896.1
was likely deposited into NCBI incorrectly.

Isolates were also tested with the in-house nuc quantitative PCR (qPCR) in which the
primers are specific to S. aureus (10) (the nuc target is used as a control for S. aureus in a
mecA PCR assay). All isolates of S. argenteus for which the described nuc qPCR assay was
run were negative (Table 1), while control isolates of S. aureus were positive (data not
shown). While this result is evidence that the isolates under investigation were not S. aur-
eus, the negative results of this assay do not specifically identify S. argenteus and cannot
rule out S. schweitzeri. The lack of definitive identification prompted the use of WGS.

Patient demographics and specimen descriptions. S. argenteus isolates were cul-
tured from patients in Ontario, Canada (n=16), Missouri (n= 4), Minnesota (n=1), or
Colorado (n= 1) and identified between October 2017 and November 2019. Detailed
patient information for these isolates was not available. Of the 22 isolates described, 7
were from sterile sites, 11 from nonsterile sites, and 4 from surveillance screens.
Seventy-seven percent (n = 17) were recovered from males and 23% (n = 5) from
females. Ages of patients ranged from ,1 to $75 years (Table 1).

Phenotypic antimicrobial susceptibility.MICs for all isolates and antibiotics tested
are presented in Table 2. All S. argenteus identified in this collection demonstrated low
MICs to clindamycin, erythromycin, linezolid, trimethoprim-sulfamethoxazole, and van-
comycin and would be considered susceptible using S. aureus breakpoints (39). Ten of
22 (45.4%) isolates were resistant to penicillin (MIC range 0.5 to 8mg/ml); 3 of these iso-
lates (PHL3431, PHL3432, PHL3433) were alsomecA PCR positive, demonstrating oxacil-
lin MICs of .2mg/ml (PHL3431, PHL3433) and resistance to ciprofloxacin. S. argenteus
isolates with penicillin MICs of #0.12mg/ml were negative by the penicillin zone edge
test. One isolate (PHL1144) was resistant to gentamicin with an MIC of 16mg/ml.

As there are different oxacillin breakpoints for different Staphylococcus species (39),
we evaluated multiple species-specific breakpoints for oxacillin susceptibility testing.
Using S. aureus breakpoints, 3 of 21 isolates (14.3%) would be considered oxacillin re-
sistant, while when using the “other Staphylococcus species” breakpoints, 7 of 21
(33.3%) would be considered resistant. All S. argenteus isolates identified as oxacillin re-
sistant using S. aureus breakpoints harboring mecA (as determined by mecA-specific
qPCR as well as WGS analysis). PHL3432 was identified as being mecA positive but was
not subjected to oxacillin susceptibility testing due to strain loss.

Genome features and comparative genomics. De novo assembly of sequence
reads using CLC Genomics Workbench resulted in 1,610,728 to 7,425,408 bp.
Between 12 and 315 contigs were obtained, with the largest contig size of
1,088,191 bp length and average coverage of 153�. The N50 values of assemblies
were 23,043 to 693,825 bp.

The sequences of all 23 S. argenteus (22 clinical isolates and 1 type strain, DSM
28299T) and 1 S. schweitzeri genome (DSM 28300T) were assembled by mapping short
reads to the reference sequence XNO62 (accession number CP023076.1). Assembled
genomes ranged from 2,599,989 to 2,724,271 bp in size with a GC content of 32.42%.
Genome annotation by RAST showed an average of 2,665 (median 2,603) coding
sequences and average of 63 RNAs (tRNAs and rRNAs) among all S. argenteus. De novo
assembly of 4,014,380 reads obtained for type strain S. schweitzeri (DSM 28300T)
resulted in 37 contigs between 200 and 343,130 bp; the assembled genome was
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2,784,939 bp long with 305� coverage and N50 of 200,036. Using RAST annotation,
2,885 coding DNA sequences (CDSs) and 65 RNAs (tRNAs and rRNAs) were identified.

The clinical isolates’ pairwise ANI values between isolates studied and S. argenteus
XNO62 (accession number CP023076.1) were 98.70 to 99.96% and were 92.61 to
92.23% and 87.58 to 89.0% compared against S. schweitzeri and S. aureus, respectively
(see Table S1 in the supplemental material).

A circular alignment of genomes from this study compared with reference genomes
S. argenteus XNO62 and MSHR1132T is presented in Fig. S1. This alignment, as well as
other features such as sequence similarity and distribution of GC content, demon-
strated a high level of homology among members of these groups.

The WGS data for all 22 clinical isolates were interrogated for MLST and other fea-
tures commonly used for typing S. aureus. Four MLSTs were identified in the collection:
ST2250 (16/22) predominated, followed by ST1223 (3/22), ST2198 (2/22), and ST2793
(1/22) (Fig. 1A). MLSTs for type strains of S. argenteus (DSM 28299T) and S. schweitzeri
(DSM 28300T) were determined to be ST1850 and ST2022, respectively, as previous
described (3). Using Basic Local Alignment Search Tool (BLAST; https://blast.ncbi.nlm
.nih.gov/Blast.cgi) on extracted staphylocoagulase (coa) sequences from assemblies,
three coa types were identified: XId, XV, and XIV, with coa-type XId being the predomi-
nant type (17/22) (Fig. 1A). We were unable to assign spa type from in silico whole-ge-
nome data due to the repetitive region span being greater than the read length of
150 bp. Using traditional endpoint PCR and Sanger sequencing, we were able to con-
firm presence of at least 8 spa types among clinical isolates of S. argenteus in this study.
All mecA-positive S. argenteus identified in this study (3/22) were assigned the spa type
t7960, while the majority of isolates were spa type t5078 (9/22). Other spa types identi-
fied include t10900 (1/22), t9385 (2/22), and 3 novel spa types, t19456 (1/22), t19457
(1/22), and t19497 (2/22). We were unable to assign a spa type to 3 isolates, all of which
belonged to ST1223 (https://spa.ridom.de/spatypes.shtml) (Table S2). Strains DSM
28299T and DSM 28300T were t17252 and t6705, respectively.

Phylogenetic relationships of S. argenteus genomes were assessed using core ge-
nome SNV as well as whole-genome sequence analysis, with both methods yielding
phylogenetic trees with similar topologies. Examination of clinical isolates as well as
the strain DSM 28299T resulted in 5 clusters of S. argenteus which coincided with the 5
MLSTs (WGS phylogenetic tree shown in Fig. 1, SNV tree not shown). The major cluster
was comprised of 16 isolates (10 from Canada and 6 from the United States), all MLST
2250, with little variation in the core genome (0.2 to 0.3%).

The full lengths of S. argenteus, S. aureus, and S. schweitzeri 16S rRNA and nuc genes
were extracted from the assemblies. As shown before by others, our results demon-
strate that there is insufficient demarcation between the 16S rRNA gene of these three
species to be used for species identification (Fig. S1). However, the nuc gene allows for
clear separation of the three species (Fig. 2) (3, 8, 9).

Antibiotic resistance determinants identified through WGS analysis. A total of 9
antibiotic resistance genes were identified among the 22 S. argenteus clinical isolates;
each isolate harbored multiple genes associated with resistance (Table 2). Genes identi-
fied include mecA (3/22), mgrA (norR) and arlR (both 22/22) (encode regulatory compo-
nents for a major facilitator superfamily [MFS] antibiotic efflux pump associated with
fluoroquinolone, tetracycline, penicillin, cephalosporin, and peptide antibiotic resist-
ance) (56, 57), mepR (21/22) (encodes a repressor that helps to regulate expression of a
multidrug and toxic compound extrusion [MATE] efflux pump [58, 59]), blaZ (7/22)
(encodes class A b-lactamase) (60), fosB (18/22) (encodes a fosfomycin thiol transferase
which inactivates fosfomycin) (61), lmrS (22/22) (encodes a component of an MFS efflux
pump associated with resistance to several antibiotics, including macrolides, aminogly-
cosides, diaminopyrimidines, and oxazolidinones) (62), and aac(69)-Ie-aph(29')-Ia (1/22)
(encodes an aminoglycoside-modifying enzyme which inactivates aminoglycoside,
including gentamicin) (63). As demonstrated in Table 2, many of these molecular deter-
minants of resistance correlated with phenotypic resistance. Further analysis of isolates
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FIG 1 Whole-genome sequence phylogenetic tree of S. argenteus. (A) Whole-genome sequence phylogenetic tree of S. argenteus from this study and
related type strains of the genus Staphylococcus obtained from TYGS. Tree inferred with FastME 2.1.6.1 from Genome BLAST Distance Phylogeny

(Continued on next page)
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with mecA showed that their SCCmec type IV possesses the class B mec gene complex,
harboring the mecA, mecR1, IS1272, and ccrA/ccrB gene complex (Fig. 1A).

Given a recent report of daptomycin resistance in S. argenteus associated with a
point mutation in mprF, we analyzed the predicted protein of this gene in all isolates
of this study and found all to be wild type (S337, data not shown) (30).

As plasmids often carry antibiotic resistance determinants, we investigated the
presence of plasmids using genomic analysis. Using the PlasmidFinder, a total of 7
plasmid replicon types were detected in our isolates, characterized as rep16, rep5,
repUS5, rep5a, repUS9, rep20, and rep21 with accession numbers BX571858,
NC005011, NC003265, AP003139, AF203376, FN433597, and NC007790, respec-
tively, with an alignment similarity ranging from 99.24 to 100%. The S. argenteus
isolates in this study were found to harbor multireplicons in various combinations,
including rep16/rep5, rep16/rep5a, rep16/repUS5, rep16/rep5/repUS9, and rep21/
rep20 (Table S2).

Putative virulence determinants. Analysis of putative virulence gene composi-
tion based on the VF database revealed a number of virulence determinants in all S.
argenteus isolates from this study, including autolysin (atlE), elastin binding protein
(ebp), fibrinogen binding protein (efb), intercellular adhesion (icaA, icab, icaC, and

FIG 1 Legend (Continued)
approach (GBDP) distances calculated from genome sequences. The branch lengths are scaled in terms of GBDP distance formula d5. The numbers
above branches are GBDP pseudo-bootstrap support values.60% from 100 replications. The reference sequences available in GenBank and the type
strains sequenced in this study are indicated by solid black and blue dots, respectively. The tree was rooted at the midpoint. Staphylocoagulase (coa),
SCC mec IV (2B), mecA, ccrA and ccrB, IS1272, PVL, TSST, MLST, and spa type are indicated for each strain. Presence of a given gene/element is identified
by colored boxes. NT, nontypable. (B) Magnified main branch of phylogenetic tree containing S. argenteus representing clustering of strains possessing
same MLST. *, sequences for these type strains (DSM 28229T, DSM 28300T) were generated in this study; #, novel spa types identified in this study.

FIG 1 (Continued)
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icaR), staphylokinase (sak), staphylococcal complement inhibitor (scn), staphylococcal
protein A (spa), cysteine protease (sspB), hyaluronate lyase (hysA), lipase (geh and lip),
staphylocoagulase (coa), thermonuclease (nuc), capsular (cap5 and cap8), type VII
secretion system (esaG, essA, essB, essC, and esxA), alpha hemolysin (hly/hla), delta he-
molysin (hld), exfoliative toxin type A (eta), and gamma hemolysin (hlgA, hlgB, and

FIG 2 nuc phylogenetic tree. Phylogenetic dendrogram of nuc sequences of S. argenteus from this study and S. argenteus, S. schweitzeri, and S. aureus
strains from GenBank constructed by neighbor-joining method. The evolutionary distances were computed using the maximum composite likelihood
method and are in the units of the number of base substitutions per site. The analysis involved 125 isolates. There were a total of 426 positions in the final
data set. Evolutionary analyses were conducted in MEGA6. Green text, S. argenteus; red text, S. schweitzeri; blue text, S. aureus; black diamond, genome
sequence of type strains generated in this study; black square, genome sequence of type strains obtained from GenBank; red circles, sequences from PHO
isolates; blue circles, sequences from Mayo Clinic isolates.
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hlgC) genes (Table S3). Additionally, one clinical S. argenteus isolate (WU3, a throat
swab isolate) harbored the gene that encodes Panton-Valentine leukocidin (PVL), and
another single isolate (MC4, a blood isolate) harbored the gene for toxic shock syn-
drome toxin (TSST-1).

DISCUSSION

Through many reports over the past several years, including this one, it is clear that
S. argenteus is a distinct species from S. aureus and that it is clinically relevant as a
cause of skin and soft tissue infections as well as severe invasive disease (3, 7, 12–14,
16–19, 23, 24, 64). Several reports have indicated international detection of S. argenteus
(12, 14–16, 25–29, 65–68); here, we report the first large collection of clinical isolates of
S. argenteus in North America, from both Canada and the United States. As large refer-
ence laboratories, we each receive isolates to confirm bacterial identification. From
2017 to 2019, collectively, we received and identified 22 isolates of S. argenteus.

We encountered some of the same initial challenges as other investigators in the
differentiation of S. argenteus from S. aureus using both traditional biochemical assays
and a commercial MALDI-TOF MS (Bruker Biotyper) system, despite having spectra for
both S. argenteus and S. schweitzeri in the databases. Although not investigated here,
another commercial MALDI-TOF MS system (Vitek MS, bioMérieux) does not currently
have spectra for S. argenteus or S. schweitzeri, and users of this system may erroneously
call these organisms S. aureus. Further investigation must be undertaken concerning
the ability of commercial MALDI-TOF MS platforms and database/software versions to
differentiate among the S. aureus complex members. At this time, current routine
methods used in clinical microbiology laboratories will not conclusively differentiate S.
argenteus from S. aureus.

All S. argenteus encountered during this investigation period were definitively iden-
tified using a WGS approach. Our WGS data are consistent with previous reports that S.
argenteus is distinct from S. aureus and S. schweitzeri (3, 7, 14, 25, 69). All isolates of S.
argenteus for which the described nuc PCR assay was run were negative, while isolates
of S. aureus were positive (data not shown) (10); however, depending on where the pri-
mers are, this may not always be the case. The nuc sequences examined demonstrate
considerable sequence diversity between S. aureus, S. argenteus, and S. schweitzeri, con-
sistent with what other investigators have found (3, 8, 9, 14, 70). This sequence diver-
sity can be exploited as with the appropriate primers the nuc gene can be a target for
discriminating S. aureus from other members of the complex, thus avoiding the need
for WGS to distinguish S. aureus from S. argenteus/S. schweitzeri. An example of such an
assay is the one developed by the Mayo Clinic (71). As many laboratories already
include a nuc target in their mecA PCR as a control, this may not require significant
workflow changes. Other groups have identified crtM and sodA as useful targets for dif-
ferentiating these species (29, 72).

S. argenteus from this collection were isolated from a range of sites, including normally
sterile and nonsterile specimen sources, and from surveillance swabs. Patients ranged in
age from ,1 to $75 years, with most being older than 45 years of age. One limitation of
this study is that we do not have detailed information on the patients, including if they
were inpatients or outpatients and whether the S. argenteus was likely acquired in the
community or via a nosocomial route. It is possible that 3 isolates in this study were part
of a nosocomial transmission event, as these isolates were collected from patients being
investigated as part of a MRSA cluster in a health care facility (PHL3431, PHL3432, and
PHL3433). These three isolates were identified through surveillance screens and are all
temporally related from the same health care facility; all were mecA-positive ST2250, spa
type t7960, SCCmec type IV (2B) with similar antimicrobial susceptibility patterns and
were$99.94% similar to one another by ANI comparison. Another limitation of this work
is that we have no treatment or clinical outcome data on these patients. This type of in-
formation needs to be collected to better understand the transmission dynamics,
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reservoirs, and best treatment options for patients; however, in order for this to be done,
widespread, accurate identification of S. argenteusmust be available.

This study is unique in that it includes a large number of S. argenteus isolates from
North America, from both Canada and the United States. Although it has been postu-
lated to have spread globally, this is the first report to demonstrate that S. argenteus is
present in North America beyond a single case report and is likely circulating (30). Like
many global studies, the majority of isolates (73%) in this study belong to MLST
ST2250 (14, 16, 18, 19, 23, 32, 65, 73). These ST2250 isolates were also part of coa XId,
described as the predominant type by Aung et al. in their study (69). There was a high
degree of homology among these ST2250/coa XId isolates; however, 5 different spa
types were identified, showing some diversity between strains.

Three additional previously reported but less frequently described MLSTs (ST1223,
ST2198, and ST2793) were identified from the Canadian specimens, with correspond-
ing coa types XV, XIV, and XId, respectively, thus demonstrating some diversity in the
North American isolates (14, 16, 23, 25, 31, 32, 69, 72, 74–77). Most isolates in this study
belonged to the coa types XIV and XV. spa typing is based on the highly variable and
repetitive X-region of a single gene (spa) that encodes protein A. Use of reads gener-
ated by WGS in order to infer spa type has been done for S. aureus; however, factors
such as length of the reads and repetitive sequence regions affect the de novo assem-
bly and may result in incorrect assignments of spa type. To overcome these challenges,
here we relied on traditional Sanger sequencing to confirm spa types and identified 7
different spa types, including 3 previously undescribed types (all in ST1223 isolates),
adding evidence of the diversity of this collection of S. argenteus. A wide array of viru-
lence determinants commonly associated with S. aureus were also detected, with PVL
and TSST-1 of note. Further detailed investigation of isolates is needed to truly under-
stand the diversity and epidemiology of the organism in North America.

It is interesting to consider why this organism appears to be emerging at this time.
It is possible that S. argenteus, as part of the S. aureus clonal complex, has always been
a human pathogen and had gone undetected until recently due to implementation of
newer, more specific identification methods (e.g., WGS). However, others have pro-
vided evidence that supports a fairly recent host adaption which has allowed it to colo-
nize and infect humans (the same does not appear to have happened with the closely
related S. schweitzeri, for which there are no reports of human infection) (25, 75).
Regardless of whether it is a newly emergent pathogen or an organism that we can
only now differentiate from S. aureus, it is clear that S. argenteus is pathogenic and pos-
sesses many of the same virulence determinants and resistance mechanisms (including
mecA) as S. aureus. Based on our experience as well as the emerging findings reported
in the literature, we support the proposal that S. argenteus should be treated in a simi-
lar manner as S. aureus in terms of IPAC measures, as well as clinically, for the following
reasons: (i) evidence points to similar disease presentations (including invasive dis-
ease), (ii) there is evidence of both community and nosocomial spread, and (iii) S.
argenteus, like S. aureus, can carry mecA, PVL, TSST-1, and other virulence genes, sug-
gesting it has similar pathogenic potential (78).

Clinical laboratories and other members of the health care teams should recognize
that S. argenteus and S. schweitzeri are members of the S. aureus complex; this is signifi-
cant, as classification guides appropriate clinical interpretation of culture as well as
oxacillin susceptibility. If the oxacillin MIC breakpoints of the non-S. aureus group (S #
0.25mg/ml; R $ 0.5mg/ml) are assigned to S. argenteus instead of S. aureus oxacillin
MIC breakpoints (S # 2mg/ml; R $ 4mg/ml), isolates may be inappropriately reported
as oxacillin resistant (39). Likewise, cefoxitin disk diffusion breakpoints differ between
these two groups. Furthermore, allowable methods for detection of methicillin resist-
ance differ according to Staphylococcus species; for example, cefoxitin MIC is an appro-
priate testing method for S. aureus, while it is not appropriate for the “other
Staphylococcus spp.” group. Given that S. argenteus appears to be more like S. aureus
than other staphylococci applying the genomic, phenotypic, and clinical data to date,
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we propose that S. aureus antimicrobial breakpoints be applied for S. argenteus and S.
schweitzeri as members of the S. aureus complex. At the January 2020 meeting of the
CLSI Antimicrobial Susceptibility Testing Subcommittee, CLSI members voted to
approve a motion to accept the recommendation, when a definitive identification can-
not be made, to report S. argenteus as “S. aureus complex” or, when identified to spe-
cies level, to report it as “S. aureus complex (S. argenteus)” so that it is not overlooked
as a less pathogenic/nonpathogenic species (79). Additionally, it was approved to use
S. aureus breakpoints and interpretive categories for reporting. This change will ensure
accurate reporting of susceptibility results in all laboratories, including those currently
unable to differentiate species within the complex, as well as provide guidance for lab-
oratories that can identify these bacteria to the species level.

The availability of enhanced technology has dramatically improved our ability to
accurately describe and identify microorganisms, but access to this technology as well
as changing taxonomy can be challenging for the clinical laboratory as well as health
care providers. If both organisms result in similar clinical presentations, some may ask
if clinical laboratories should distinguish between S. aureus and S. argenteus. A recent
position paper by the ESCMID Study Group for Staphylococci and Staphylococcal
Diseases (ESGS) has proposed that due to known pathogenic and clinical similarities
between S. aureus and S. argenteus, there is currently no need to distinguish within the
S. aureus complex (78). However, in order to better understand the population epide-
miology and pathogenicity of S. argenteus (and S. schweitzeri), it is important to distin-
guish the members of the S. aureus complex from a research and surveillance perspec-
tive. Based on the data to date, we recommend that clinical laboratories, where
possible, (i) clearly report the organism as “Staphylococcus argenteus, member of
Staphylococcus aureus clonal complex” or something similar in order to capture both
the unique nature of the organism as well as its close link to the well-known pathogen
(see Table S4 in the supplemental material) and (ii) apply “S. aureus/S. aureus complex”
breakpoints for antibiotics, including oxacillin. This method of reporting will hopefully
allow for education of clinical staff and better data collection as well as larger studies
on the clinical and treatment outcomes of patients with these infections.
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