1,195 research outputs found
Spin correlations and exchange in square lattice frustrated ferromagnets
The J1-J2 model on a square lattice exhibits a rich variety of different
forms of magnetic order that depend sensitively on the ratio of exchange
constants J2/J1. We use bulk magnetometry and polarized neutron scattering to
determine J1 and J2 unambiguously for two materials in a new family of vanadium
phosphates, Pb2VO(PO4)2 and SrZnVO(PO4)2, and we find that they have
ferromagnetic J1. The ordered moment in the collinear antiferromagnetic ground
state is reduced, and the diffuse magnetic scattering is enhanced, as the
predicted bond-nematic region of the phase diagram is approached.Comment: 4 pages, 4 figure
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
The Baryon Oscillation Spectroscopic Survey of SDSS-III
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the
scale of baryon acoustic oscillations (BAO) in the clustering of matter over a
larger volume than the combined efforts of all previous spectroscopic surveys
of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as
i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7.
Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000
quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5.
Early results from BOSS include the first detection of the large-scale
three-dimensional clustering of the Lyman alpha forest and a strong detection
from the Data Release 9 data set of the BAO in the clustering of massive
galaxies at an effective redshift z = 0.57. We project that BOSS will yield
measurements of the angular diameter distance D_A to an accuracy of 1.0% at
redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the
same redshifts. Forecasts for Lyman alpha forest constraints predict a
measurement of an overall dilation factor that scales the highly degenerate
D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey
is complete. Here, we provide an overview of the selection of spectroscopic
targets, planning of observations, and analysis of data and data quality of
BOSS.Comment: 49 pages, 16 figures, accepted by A
Study of Z Boson Pair Production in e+e- Collisions at LEP at \sqrt{s}=189 GeV
The pair production of Z bosons is studied using the data collected by the L3
detector at LEP in 1998 in e+e- collisions at a centre-of-mass energy of 189
GeV. All the visible final states are considered and the cross section of this
process is measured to be 0.74 +0.15 -0.14 (stat.) +/- 0.04 (syst.) pb. Final
states containing b quarks are enhanced by a dedicated selection and their
production cross section is found to be 0.18 +0.09 -0.07 (stat.) +/- 0.02
(syst.) pb. Both results are in agreement with the Standard Model predictions.
Limits on anomalous couplings between neutral gauge bosons are derived from
these measurements
Formation of the in Two-Photon Collisions at LEP
The two-photon width of the meson has been
measured with the L3 detector at LEP. The is studied in the decay
modes , KK, KK,
KK, , , and
using an integrated luminosity of 140 pb at GeV and
of 52 pb at GeV. The result is
(BR) keV. The dependence of the cross section is studied for
GeV. It is found to be better described by a Vector Meson
Dominance model form factor with a J-pole than with a -pole. In addition,
a signal of events is observed at the mass. Upper limits
for the two-photon widths of the , , and are also
given
Search for Scalar Leptons in e+e- collisions at \sqrt{s}=189 GeV
We report the result of a search for scalar leptons in e+e- collisions at 189
GeV centre-of-mass energy at LEP. No evidence for such particles is found in a
data sample of 176 pb^{-1}. Improved upper limits are set on the production
cross sections for these new particles. New exclusion contours in the parameter
space of the Minimal Supersymmetric Standard Model are derived, as well as new
lower limits on the masses of these supersymmetric particles. Under the
assumptions of common gaugino and scalar masses at the GUT scale, we set an
absolute lower limit on the mass of the lightest scalar electron of 65.5 Ge
K0s K0s Final State in Two-Photon Collisions and Implications for Glueballs
The K0s K0s final state in two-photon collisions is studied with the L3
detector at LEP. The mass spectrum is dominated by the formation of the
f_2'(1525) tensor meson in the helicity-two state with a two-photon width times
the branching ratio into K Kbar of 76 +- 6 +- 11 eV. A clear signal for the
formation of the f_J(1710) is observed and it is found to be dominated by the
spin-two helicity-two state. No resonance is observed in the mass region around
2.2 GeV and an upper limit of 1.4 eV at 95% C.L. is derived for the two-photon
width times the branching ratio into K0s K0s for the glueball candidate
xi(2230)
Direct Observation of Longitudinally Polarised W Bosons
The three different helicity states of W bosons, produced in the reaction
e+e- -> W+W- -> l nu q q~ are studied using leptonic and hadronic W decays at
sqrt{s}=183GeV and 189GeV. The W polarisation is also measured as a function of
the scattering angle between the W- and the direction of the e- beam. The
analysis demonstrates that W bosons are produced with all three helicities, the
longitudinal and the two transverse states. Combining the results from the two
center-of-mass energies and with leptonic and hadronic W decays, the fraction
of longitudinally polarised W bosons is measured to be 0.261 +/- 0.051(stat.)
+/- 0.016(syst.) in agreement with the expectation from the Standard Model
Search for Heavy Isosinglet Neutrino in e+e- Annihilation at LEP
We report on a search for the first generation heavy neutrino that is an
isosinglet under the standard SU(2)_L gauge group. The data collected with the
L3 detector at center-of-mass energies between 130 GeV and 208 GeV are used.The
decay channel N_e --> eW is investigated and no evidence is found for a heavy
neutrino, N_e, in a mass range between 80 GeV and 205 GeV. Upper limits on the
mixing parameter between the heavy and light neutrino are derived
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
- …