133 research outputs found
Current and power spectrum in a magnetic tunnel device with an atomic size spacer
Current and its noise in a ferromagnetic double tunnel barrier device with a
small spacer particle were studied in the framework of the sequential tunneling
approach. Analytical formulae were derived for electron tunneling through the
spacer particle containing only a single energy level. It was shown that
Coulomb interactions of electrons with a different spin orientation lead to an
increase of the tunnel magnetoresistance. Interactions can also be responsible
for the negative differential resistance. A current noise study showed, which
relaxation processes can enhance or reduce fluctuations leading either to a
super-Poissonian or a sub-Poissonian shot noise.Comment: 12 pages, 4 figure
Supersymmetry breaking in two dimensions: the lattice N=1 Wess-Zumino model
We study dynamical supersymmetry breaking by non perturbative lattice
techniques in a class of two-dimensional N=1 Wess-Zumino models. We work in the
Hamiltonian formalism and analyze the phase diagram by analytical
strong-coupling expansions and explicit numerical simulations with Green
Function Monte Carlo methods.Comment: 53 pages, 17 figures, revtex
Statistical gamma-ray decay studies at iThemba LABS
Abstract. A program to study the Îł -ray decay from the region of high-level density has been established
at iThemba LABS, where a high-resolution gamma-ray detector array is used in conjunction with silicon
particle-telescopes. Results from two recent projects are presented: 1) The 74Ge(α, α
Îł ) reaction was used
to investigate the Pygmy Dipole Resonance. The results were compared to (Îł,Îł
) data and indicate that the
dipole states split into mixed isospin and relatively pure isovector excitations. 2) Data from the 95Mo(d,p)
reaction were used to develop a novel method for the determination of spins for low-lying discrete levels
utilizing statistical Îł -ray decay in the vicinity of the neutron separation energy. These results provide insight
into the competition of (Îł ,n) and (Îł,Îł
) reactions and highlights the need to correct for angular momentum
barrier effect
Measurement of CP observables in B± â D(â)K± and B± â D(â)ϱ decays
Measurements of CP observables in B ± âD (â) K ± and B ± âD (â) Ï Â± decays are presented, where D (â) indicates a neutral D or D â meson that is an admixture of D (â)0 and DÂŻ (â)0 states. Decays of the D â meson to the DÏ 0 and DÎł final states are partially reconstructed without inclusion of the neutral pion or photon, resulting in distinctive shapes in the B candidate invariant mass distribution. Decays of the D meson are fully reconstructed in the K ± Ï â , K + K â and Ï + Ï â final states. The analysis uses a sample of charged B mesons produced in pp collisions collected by the LHCb experiment, corresponding to an integrated luminosity of 2.0, 1.0 and 2.0 fb â1 taken at centre-of-mass energies of s=7, 8 and 13 TeV, respectively. The study of B ± âD â K ± and B ± âD â Ï Â± decays using a partial reconstruction method is the first of its kind, while the measurement of B ± âDK ± and B ± âDÏ Â± decays is an update of previous LHCb measurements. The B ± âDK ± results are the most precise to date
Measurement of asymmetries in and decays
See paper for full list of authors - All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-041.html - Submitted to Phys. Lett. BInternational audienceA search for CP violation in D±âηâČϱ and D±sâηâČϱ decays is performed using proton-proton collision data, corresponding to an integrated luminosity of 3 fbâ1, recorded by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The measured CP-violating charge asymmetries are ACP(D±âηâČϱ)=(â0.61±0.72±0.55±0.12)% and ACP(D±sâηâČϱ)=(â0.82±0.36±0.24±0.27)%, where the first uncertainties are statistical, the second systematic, and the third are the uncertainties on the ACP(D±âK0Sϱ) and ACP(D±sâÏϱ) measurements used for calibration. The results represent the most precise measurements of these asymmetries to date
Observation of and search for decays
The first observation of the decay is reported
using proton-proton collision data corresponding to an integrated luminosity of
recorded by the LHCb experiment at centre-of-mass energies
of 7 and 8 TeV. The resonance is produced in the decay . The product of branching fractions normalised to that for
the intermediate state, , is measured to be
\begin{align*} {\cal R}_{\eta_{c}(2S)}\equiv\frac{{\mathcal B}(B^{+} \to
\eta_{c}(2S) K^{+}) \times {\mathcal B}(\eta_{c}(2S) \to p \bar p)}{{\mathcal
B}(B^{+} \to J/\psi K^{+}) \times {\mathcal B}(J/\psi\to p \bar p)} =~& (1.58
\pm 0.33 \pm 0.09)\times 10^{-2}, \end{align*} where the first uncertainty is
statistical and the second systematic. No signals for the decays and
are seen, and the 95\% confidence level upper limits on their relative
branching ratios are % found to be and
. In addition, the mass differences between the
and the states, between the and the
states, and the natural width of the are measured as
\begin{align*} M_{J/\psi} - M_{\eta_{c}(1S)} =~& 110.2 \pm 0.5 \pm 0.9 \rm \,
MeV, M_{\psi(2S)} -M_{\eta_{c}(2S)} =~ & 52.5 \pm 1.7 \pm 0.6 \rm \, MeV,
\Gamma_{\eta_{c}(1S)} =~& 34.0 \pm 1.9 \pm 1.3 \rm \, MeV. \end{align*}Comment: 16 pages, 2 figures All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-016.htm
Measurement of , , and production asymmetries in 7 and 8 TeV proton-proton collisions
See paper for full list of authors - All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-062.html - Submitted to Phys. Lett. B.International audienceThe B0, B0s, B+ and Î0b hadron production asymmetries are measured using a data sample corresponding to an integrated luminosity of 3.0 fbâ1, collected by the LHCb experiment in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. The measurements are performed as a function of transverse momentum and rapidity of the b hadrons within the LHCb detector acceptance. The overall production asymmetries, integrated over transverse momentum and rapidity, are also determined
Search for violation in the phase space of decays
A search for time-integrated violation in the Cabibbo-suppressed decay
\mbox{D^0\rightarrow\pi^+\pi^-\pi^+\pi^-} is performed using an unbinned,
model-independent technique known as the energy test. This is the first
application of the energy test in four-body decays. The search is performed for
-even asymmetries and, for the first time, is extended to probe the
-odd case. Using proton-proton collision data corresponding to an integrated
luminosity of 3.0 fb collected by the LHCb detector at centre-of-mass
energies of 7 TeV and 8 TeV, the world's best sensitivity to
violation in this decay is obtained. The data are found to be consistent with
the hypothesis of symmetry with a -value of in the
-even case, and marginally consistent with a -value of in
the -odd case, corresponding to a significance for non-conservation of
2.7 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-044.htm
First observation of forward production in collisions at TeV
The decay ZâbbÂŻ is reconstructed in pp collision data, corresponding to 2 fb â1 of integrated luminosity, collected by the LHCb experiment at a centre-of-mass energy of s=8 TeV. The product of the Z production cross-section and the ZâbbÂŻ branching fraction is measured for candidates in the fiducial region defined by two particle-level b -quark jets with pseudorapidities in the range 2.220 GeV and dijet invariant mass in the range 452045 < m_{jj} < 1655462 \pm 763Z \rightarrow b \bar{b}332 \pm 46 \pm 59Z \rightarrow b \bar{b}pp$ collisions
- âŠ