21 research outputs found

    Development and implementation of a scrub habitat compensation plan for Kennedy Space Center

    Get PDF
    Kennedy Space Center (KSC), located on Merritt Island on the east coast of central Florida, is one of three remaining major populations of the Florida Scrub Jay (Aphelocoma coerulescens coerulescens), listed as threatened by the U.S. Fish and Wildlife Service (USFWS) since 1987. Construction of new facilities by the National Aeronautics and Space Administration (NASA) on KSC over the next five years has the potential to impact up to 193 ac (78.1 ha) of Scrub Jay habitat. Under an early consultation process with the Endangered Species Office of the USFWS, NASA agreed to a compensation plan for loss of Scrub Jay habitat. The compensation plan required NASA to restore or create scrub on KSC at a 2:1 ratio for that lost. The compensation plan emphasized restoration of scrub habitat that is of marginal or declining suitability to Scrub Jays because it has remained unburned. Although prescribed burning has been conducted by the USFWS Merritt Island National Wildlife Refuge (MINWR) for more than ten years, significant areas of scrub remain unburned because they have been excluded from fire management units or because landscape fragmentation and a period of fire suppression allowed scrub to reach heights and diameters that are fire resistant. For such areas, mechanical cutting followed by prescribed burning was recommended for restoration. A second part of the restoration plan is an experimental study of scrub reestablishment (i.e., creation) on abandoned, well drained agricultural sites by planting scrub oaks and other scrub plants. The compensation plan identified 260 ac (105 ha) of scrub restoration in four areas and a 40 ac (16 ha) scrub creation site. Monitoring of restoration sites required under the plan included: establishing permanent vegetation sample transects before treatment and resampling annually for ten years after treatment, and color banding Scrub Jays to determine territories prior to treatment followed by monitoring reproductive success and survival for ten years after treatment. Monitoring scrub creation sites included determining survival of planted material for five years and establishing permanent transects to follow vegetation development for ten years after planting. Scrub Jay monitoring of creation sites is incorporated with that of adjacent restoration sites

    Paper Session II-B - High Efficiency Hyperspectral Imager for the Terrestrial and Atmospheric Multispectral Explorer

    Get PDF
    The Terrestrial and Atmospheric MultiSpectral Explorer1 (TAMSE) is a Space Shuttle Small Self- Contained Payload “Get-Away Special” (GAS) project, led by Principal Investigator Rolando Branly, and including remote sensing and microgravity experiments from Florida Space Institute member schools. One of these experiments is the High-Efficiency HyperSpectral Imager (HEHSI). The HEHSI project will provide a low-cost spaceflight demonstration of a novel type of imaging spectrometer with exceptional light gathering ability. HEHSI is also a demonstration of what can be achieved in space with a modest budget: 15KfromtheFloridaSpaceGrantConsortium(FSGC)and 15K from the Florida Space Grant Consortium (FSGC) and 10K from the Florida Space Institute (FSI). Education and workforce development are important goals of the project, with all of the mechanical, electronics, and software design and testing being carried out by an interdisciplinary team of FSI students. These six students, who are about to graduate with bachelor’s degrees in engineering (three computer, one electrical, and two aerospace), have worked on the project and received course credit for two semesters. The matching funds from FSI support the involvement of the mentor for the HEHSI experiment, Glenn Sellar, who is also responsible for the optical design. Environmental testing (thermal and vibration) will be carried out by the students at KSC’s Physical Testing Laboratory, under a cooperative Space Act Agreement. As this instrument is the first remote sensing payload constructed in Florida (to the authors knowledge), it also serves as a seed for diversification of the space industry in Florida. An overview of the project is presented in this paper, including the science objectives, and the optical, mechanical, electrical, and software designs

    Design of graph filters and filterbanks

    Get PDF
    International audienceBasic operations in graph signal processing consist in processing signals indexed on graphs either by filtering them or by changing their domain of representation, in order to better extract or analyze the important information they contain. The aim of this chapter is to review general concepts underlying such filters and representations of graph signals. We first recall the different Graph Fourier Transforms that have been developed in the literature, and show how to introduce a notion of frequency analysis for graph signals by looking at their variations. Then, we move to the introduction of graph filters, that are defined like the classical equivalent for 1D signals or 2D images, as linear systems which operate on each frequency of a signal. Some examples of filters and of their implementations are given. Finally, as alternate representations of graph signals, we focus on multiscale transforms that are defined from filters. Continuous multiscale transforms such as spectral wavelets on graphs are reviewed, as well as the versatileapproaches of filterbanks on graphs. Several variants of graph filterbanks are discussed, for structured as well as arbitrary graphs, with a focus on the central point of the choice of the decimation or aggregation operators

    Complement-activating donor-specific anti-HLA antibodies and solid organ transplant survival: A systematic review and meta-analysis

    Get PDF
    <div><p>Background</p><p>Anti-human leukocyte antigen donor-specific antibodies (anti-HLA DSAs) are recognized as a major barrier to patients’ access to organ transplantation and the major cause of graft failure. The capacity of circulating anti-HLA DSAs to activate complement has been suggested as a potential biomarker for optimizing graft allocation and improving the rate of successful transplantations.</p><p>Methods and findings</p><p>To address the clinical relevance of complement-activating anti-HLA DSAs across all solid organ transplant patients, we performed a meta-analysis of their association with transplant outcome through a systematic review, from inception to January 31, 2018. The primary outcome was allograft loss, and the secondary outcome was allograft rejection. A comprehensive search strategy was conducted through several databases (Medline, Embase, Cochrane, and Scopus).</p><p>A total of 5,861 eligible citations were identified. A total of 37 studies were included in the meta-analysis. Studies reported on 7,936 patients, including kidney (<i>n</i> = 5,991), liver (<i>n</i> = 1,459), heart (<i>n</i> = 370), and lung recipients (<i>n</i> = 116). Solid organ transplant recipients with circulating complement-activating anti-HLA DSAs experienced an increased risk of allograft loss (pooled HR 3.09; 95% CI 2.55–3.74, <i>P</i> = 0.001; I<sup>2</sup> = 29.3%), and allograft rejection (pooled HR 3.75; 95% CI: 2.05–6.87, <i>P</i> = 0.001; I<sup>2</sup> = 69.8%) compared to patients without complement-activating anti-HLA DSAs. The association between circulating complement-activating anti-HLA DSAs and allograft failure was consistent across all subgroups and sensitivity analyses. Limitations of the study are the observational and retrospective design of almost all included studies, the higher proportion of kidney recipients compared to other solid organ transplant recipients, and the inclusion of fewer studies investigating allograft rejection.</p><p>Conclusions</p><p>In this study, we found that circulating complement-activating anti-HLA DSAs had a significant deleterious impact on solid organ transplant survival and risk of rejection. The detection of complement-activating anti-HLA DSAs may add value at an individual patient level for noninvasive biomarker-guided risk stratification.</p><p>Trial registration</p><p>National Clinical Trial protocol ID: <a href="https://clinicaltrials.gov/ct2/show/NCT03438058" target="_blank">NCT03438058</a>.</p></div
    corecore