259 research outputs found

    Tubo-Ovarian Abscess Formation in Users of Intrauterine Devices Remote From Insertion: A Report of Three Cases

    Get PDF
    Background: The association between tubo-ovarian abscess formation and the presence of an intrauterine device (IUD) is well recognized. It has been suggested that the risk of upper-genital-tract infection is highest during the immediate period following the insertion of an IUD, returning to baseline by 5 months postinsertion. We present 3 cases of women who, 10–21 years after insertion of their IUDs, developed tubo-ovarian abscesses that were not causally related to sexually transmitted diseases (STDs) or actinomycetes

    Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder

    Get PDF
    The Canadian Network for Mood and Anxiety Treatments (CANMAT) previously published treatment guidelines for bipolar disorder in 2005, along with international commentaries and subsequent updates in 2007, 2009, and 2013. The last two updates were published in collaboration with the International Society for Bipolar Disorders (ISBD). These 2018 CANMAT and ISBD Bipolar Treatment Guidelines represent the significant advances in the field since the last full edition was published in 2005, including updates to diagnosis and management as well as new research into pharmacological and psychological treatments. These advances have been translated into clear and easy to use recommendations for first, second, and third- line treatments, with consideration given to levels of evidence for efficacy, clinical support based on experience, and consensus ratings of safety, tolerability, and treatment-emergent switch risk. New to these guidelines, hierarchical rankings were created for first and second- line treatments recommended for acute mania, acute depression, and maintenance treatment in bipolar I disorder. Created by considering the impact of each treatment across all phases of illness, this hierarchy will further assist clinicians in making evidence-based treatment decisions. Lithium, quetiapine, divalproex, asenapine, aripiprazole, paliperidone, risperidone, and cariprazine alone or in combination are recommended as first-line treatments for acute mania. First-line options for bipolar I depression include quetiapine, lurasidone plus lithium or divalproex, lithium, lamotrigine, lurasidone, or adjunctive lamotrigine. While medications that have been shown to be effective for the acute phase should generally be continued for the maintenance phase in bipolar I disorder, there are some exceptions (such as with antidepressants); and available data suggest that lithium, quetiapine, divalproex, lamotrigine, asenapine, and aripiprazole monotherapy or combination treatments should be considered first-line for those initiating or switching treatment during the maintenance phase. In addition to addressing issues in bipolar I disorder, these guidelines also provide an overview of, and recommendations for, clinical management of bipolar II disorder, as well as advice on specific populations, such as women at various stages of the reproductive cycle, children and adolescents, and older adults. There are also discussions on the impact of specific psychiatric and medical comorbidities such as substance use, anxiety, and metabolic disorders. Finally, an overview of issues related to safety and monitoring is provided. The CANMAT and ISBD groups hope that these guidelines become a valuable tool for practitioners across the globe

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the production cross section for W-bosons in association with jets in pp collisions at s=7 TeV with the ATLAS detector

    Get PDF

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration

    Sequence Similarity Network Reveals Common Ancestry of Multidomain Proteins

    Get PDF
    We address the problem of homology identification in complex multidomain families with varied domain architectures. The challenge is to distinguish sequence pairs that share common ancestry from pairs that share an inserted domain but are otherwise unrelated. This distinction is essential for accuracy in gene annotation, function prediction, and comparative genomics. There are two major obstacles to multidomain homology identification: lack of a formal definition and lack of curated benchmarks for evaluating the performance of new methods. We offer preliminary solutions to both problems: 1) an extension of the traditional model of homology to include domain insertions; and 2) a manually curated benchmark of well-studied families in mouse and human. We further present Neighborhood Correlation, a novel method that exploits the local structure of the sequence similarity network to identify homologs with great accuracy based on the observation that gene duplication and domain shuffling leave distinct patterns in the sequence similarity network. In a rigorous, empirical comparison using our curated data, Neighborhood Correlation outperforms sequence similarity, alignment length, and domain architecture comparison. Neighborhood Correlation is well suited for automated, genome-scale analyses. It is easy to compute, does not require explicit knowledge of domain architecture, and classifies both single and multidomain homologs with high accuracy. Homolog predictions obtained with our method, as well as our manually curated benchmark and a web-based visualization tool for exploratory analysis of the network neighborhood structure, are available at http://www.neighborhoodcorrelation.org. Our work represents a departure from the prevailing view that the concept of homology cannot be applied to genes that have undergone domain shuffling. In contrast to current approaches that either focus on the homology of individual domains or consider only families with identical domain architectures, we show that homology can be rationally defined for multidomain families with diverse architectures by considering the genomic context of the genes that encode them. Our study demonstrates the utility of mining network structure for evolutionary information, suggesting this is a fertile approach for investigating evolutionary processes in the post-genomic era
    • …
    corecore