79 research outputs found

    Shifts in mid- to late-Holocene anion composition in Elk Lake (Grant County, Minnesota): Comparison of diatom and ostracode inferences

    Get PDF
    The fossil diatom record from Elk Lake (Grant County, Minnesota) was used to reconstruct salinity and brine type between 2640 and 4645 14C yr BP. This lake was selected for a brine-type reconstruction because a previous study using fossil-ostracode assemblages indicated a shift in anion composition during the mid-Holocene (Smith et al., 1997). Salinity was reconstructed using a transfer function developed for the Northern Great Plains (NGP) of North America; the reconstruction revealed that salinity was higher (1.5–6.2 g l−1) between ~4000 and 4645 14C yr BP and dropped to 0.35–1.2 g l−1 after 4000 14C yr BP. The anion composition of the system was investigated by passively plotting fossil diatom assemblages onto a canonical correspondence analysis (CCA) biplot of the NGP modern samples to determine where core assemblages fell with respect to brine type. The biplot suggests that Elk Lake was mainly a bicarbonate system, but temporarily shifted to sulfate domination at 4080 14C yr BP. Both the salinity and brine-type reconstructions essentially agree with results from Smith et al. (1997), but the diatom record provides less-definitive information on anion proportions as compared to anion concentrations. Because shifts in the relative abundances of anion-associated diatom taxa generally tracked the ostracode-inferred changes in brine type, we conclude that fossil diatom assemblages can reveal information on shifts in brine type over time and provide insight into brine evolution and groundwater behavior in a lake system

    Mountain Lakes: Eyes on Global Environmental Change

    Get PDF
    Mountain lakes are often situated in protected natural areas, a feature that leads to their role as sentinels of global environmental change. Despite variations in latitude, mountain lakes share many features, including their location in catchments with steep topographic gradients, cold temperatures, high incident solar and ultraviolet radiation (UVR), and prolonged ice and snow cover. These characteristics, in turn, affect mountain lake ecosystem structure, diversity, and productivity. The lakes themselves are mostly small, and up until recently, have been characterized as oligotrophic. This paper provides a review and update of the growing body of research that shows that sediments in remote mountain lakes archive regional and global environmental changes, including those linked to climate change, altered biogeochemical cycles, and changes in dust composition and deposition, atmospheric fertilization, and biological manipulations. These archives provide an important record of global environmental change that pre-dates typical monitoring windows. Paleolimnological research at strategically selected lakes has increased our knowledge of interactions among multiple stressors and their synergistic effects on lake systems. Lakes from transectsacross steep climate (i.e., temperature and effective moisture) gradients in mountain regions show how environmental change alters lakes in close proximity, but at differing climate starting points. Such research in particular highlights the impacts of melting glaciers on mountain lakes. The addition of new proxies, including DNA-based techniques and advanced stable isotopic analyses, provides a gateway to addressing novel research questions about global environmental change. Recent advances in remote sensing and continuous, high-frequency, limnological measurements will improve spatial and temporal resolution and help to add records to spatial gaps including tropical and southern latitudes. Mountain lake records provide a unique opportunity for global scale assessments that provide knowledge necessary to protect the Earth system

    Tracking the hydro-climatic signal from lake to sediment: a field study from central Turkey

    Get PDF
    Palaeo-hydrological interpretations of lake sediment proxies can benefit from a robust understanding of the modern lake environment. In this study, we use Nar GölĂŒ, a non-outlet, monomictic maar lake in central Turkey, as a field site for a natural experiment using observations and measurements over a 17-year monitoring period (1997–2014). We compare lake water and sediment trap data to isotopic, chemical and biotic proxies preserved in its varved sediments. Nar GölĂŒ underwent a 3 m lake-level fall between 2000 and 2010. ÎŽ18Olakewater is correlated with this lake-level fall, responding to the change in water balance. Endogenic carbonate is shown to precipitate in isotopic equilibrium with lake water and there is a strong relationship between ÎŽ18Olakewater and ÎŽ18Ocarbonate, which suggests the water balance signal is accurately recorded in the sediment isotope record. Over the same period, sedimentary diatom assemblages also responded, and conductivity inferred from diatoms showed a rise. Shifts in carbonate mineralogy and elemental chemistry in the sediment record through this decade were also recorded. Intra-annual changes in ÎŽ18Olakewater and lake water chemistry are used to demonstrate the seasonal variability of the system and the influence this may have on the interpretation of ÎŽ18Ocarbonate. We use these relationships to help interpret the sedimentary record of changing lake hydrology over the last 1725 years. Nar GölĂŒ has provided an opportunity to test critically the chain of connection from present to past, and its sedimentary record offers an archive of decadal- to centennial-scale hydro-climatic chang

    The Arctic in the twenty-first century: changing biogeochemical linkages across a paraglacial landscape of Greenland

    Get PDF
    The Kangerlussuaq area of southwest Greenland encompasses diverse ecological, geomorphic, and climate gradients that function over a range of spatial and temporal scales. Ecosystems range from the microbial communities on the ice sheet and moisture-stressed terrestrial vegetation (and their associated herbivores) to freshwater and oligosaline lakes. These ecosystems are linked by a dynamic glacio-fluvial-aeolian geomorphic system that transports water, geological material, organic carbon and nutrients from the glacier surface to adjacent terrestrial and aquatic systems. This paraglacial system is now subject to substantial change because of rapid regional warming since 2000. Here, we describe changes in the eco- and geomorphic systems at a range of timescales and explore rapid future change in the links that integrate these systems. We highlight the importance of cross-system subsidies at the landscape scale and, importantly, how these might change in the near future as the Arctic is expected to continue to warm

    Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape

    Get PDF
    Prediction of high latitude response to climate change is hampered by poor understanding of the role of nonlinear changes in ecosystem forcing and response. While the effects of nonlinear climate change are often delayed or dampened by internal ecosystem dynamics, recent warming events in the Arctic have driven rapid environmental response, raising questions of how terrestrial and freshwater systems in this region may shift in response to abrupt climate change. We quantified environmental responses to recent abrupt climate change in West Greenland using long-term monitoring and paleoecological reconstructions. Using >40 years of weather data, we found that after 1994, mean June air temperatures shifted 2.2 °C higher and mean winter precipitation doubled from 21 to 40 mm; since 2006, mean July air temperatures shifted 1.1 °C higher. Nonlinear environmental responses occurred with or shortly after these abrupt climate shifts, including increasing ice sheet discharge, increasing dust, advancing plant phenology, and in lakes, earlier ice out and greater diversity of algal functional traits. Our analyses reveal rapid environmental responses to nonlinear climate shifts, underscoring the highly responsive nature of Arctic ecosystems to abrupt transitions

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Measurement(s) : temperature of water, temperature profile Technology Type(s) : digital curation Factor Type(s) : lake location, temporal interval Sample Characteristic - Environment : lake, reservoir Sample Characteristic - Location : global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14619009Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change
    • 

    corecore