54 research outputs found
Three red suns in the sky: A transiting, terrestrial planet in a triple M-dwarf system at 6.9 pc
We present the discovery from Transiting Exoplanet Survey Satellite (TESS) data of LTT 1445Ab. At a distance of 6.9 pc, it is the second nearest transiting exoplanet system found to date, and the closest one known for which the primary is an M dwarf. The host stellar system consists of three mid-to-late M dwarfs in a hierarchical configuration, which are blended in one TESS pixel. We use MEarth data and results from the Science Processing Operations Center data validation report to determine that the planet transits the primary star in the system. The planet has a radius of , an orbital period of days, and an equilibrium temperature of K. With radial velocities from the High Accuracy Radial Velocity Planet Searcher, we place a 3Ï upper mass limit of 8.4 on the planet. LTT 1445Ab provides one of the best opportunities to date for the spectroscopic study of the atmosphere of a terrestrial world. We also present a detailed characterization of the host stellar system. We use high-resolution spectroscopy and imaging to rule out the presence of any other close stellar or brown dwarf companions. Nineteen years of photometric monitoring of A and BC indicate a moderate amount of variability, in agreement with that observed in the TESS light-curve data. We derive a preliminary astrometric orbit for the BC pair that reveals an edge-on and eccentric configuration. The presence of a transiting planet in this system hints that the entire system may be co-planar, implying that the system may have formed from the early fragmentation of an individual protostellar core.Accepted manuscrip
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
TESS delivers its first Earth-sized planet and a warm sub-Neptune
The future of exoplanet science is bright, as TESS once again demonstrates
with the discovery of its longest-period confirmed planet to date. We hereby
present HD 21749b (TOI 186.01), a sub-Neptune in a 36-day orbit around a bright
(V = 8.1) nearby (16 pc) K4.5 dwarf. TESS measures HD21749b to be
2.61 , and combined archival and follow-up
precision radial velocity data put the mass of the planet at
. HD 21749b contributes to the TESS Level 1
Science Requirement of providing 50 transiting planets smaller than 4
with measured masses. Furthermore, we report the discovery of HD
21749c (TOI 186.02), the first Earth-sized () planet from TESS. The HD21749 system is a prime target for
comparative studies of planetary composition and architecture in multi-planet
systems.Comment: Published in ApJ Letters; 5 figures, 1 tabl
A planet within the debris disk around the pre-main-sequence star AU Microscopii
AU Microscopii (AU Mic) is the second closest pre main sequence star, at a
distance of 9.79 parsecs and with an age of 22 million years. AU Mic possesses
a relatively rare and spatially resolved3 edge-on debris disk extending from
about 35 to 210 astronomical units from the star, and with clumps exhibiting
non-Keplerian motion. Detection of newly formed planets around such a star is
challenged by the presence of spots, plage, flares and other manifestations of
magnetic activity on the star. Here we report observations of a planet
transiting AU Mic. The transiting planet, AU Mic b, has an orbital period of
8.46 days, an orbital distance of 0.07 astronomical units, a radius of 0.4
Jupiter radii, and a mass of less than 0.18 Jupiter masses at 3 sigma
confidence. Our observations of a planet co-existing with a debris disk offer
the opportunity to test the predictions of current models of planet formation
and evolution.Comment: Nature, published June 24th [author spelling name fix
The Magellan-TESS Survey I: Survey Description and Mid-Survey Results
One of the most significant revelations from Kepler is that roughly one-third
of Sun-like stars host planets which orbit their stars within 100 days and are
between the size of Earth and Neptune. How do these super-Earth and sub-Neptune
planets form, what are they made of, and do they represent a continuous
population or naturally divide into separate groups? Measuring their masses and
thus bulk densities can help address these questions of their origin and
composition. To that end, we began the Magellan-TESS Survey (MTS), which uses
Magellan II/PFS to obtain radial velocity (RV) masses of 30 transiting
exoplanets discovered by TESS and develops an analysis framework that connects
observed planet distributions to underlying populations. In the past, RV
measurements of small planets have been challenging to obtain due to the
faintness and low RV semi-amplitudes of most Kepler systems, and challenging to
interpret due to the potential biases in the existing ensemble of small planet
masses from non-algorithmic decisions for target selection and observation
plans. The MTS attempts to minimize these biases by focusing on bright TESS
targets and employing a quantitative selection function and multi-year
observing strategy. In this paper, we (1) describe the motivation and survey
strategy behind the MTS, (2) present our first catalog of planet mass and
density constraints for 25 TESS Objects of Interest (TOIs; 20 in our population
analysis sample, five that are members of the same systems), and (3) employ a
hierarchical Bayesian model to produce preliminary constraints on the
mass-radius (M-R) relation. We find qualitative agreement with prior
mass-radius relations but some quantitative differences (abridged). The the
results of this work can inform more detailed studies of individual systems and
offer a framework that can be applied to future RV surveys with the goal of
population inferences.Comment: 101 pages (39 of main text and references, the rest an appendix of
figures and tables). Submitted to AAS Journal
The Multiplanet System TOI-421: A Warm Neptune and a Super Puffy Mini-Neptune Transiting a G9 V Star in a Visual Binary
We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observationsâcomprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed EchellĂ© Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution Ăchelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurementsâand confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P_b = 5.19672 ± 0.00049 days, a mass of M_b = 7.17 ± 0.66 Mâ, and a radius of R_b = 2.68^(+0.19)_(-0.18) Râ, whereas the outer warm Neptune, TOI-421 c, has a period of Pc = 16.06819 ± 0.00035 days, a mass of M_c = 16.42^(+1.06)_(-1.04) Mâ, a radius of R_c = 5.09^(+0.16)_(-0.15) Râ and a density of Ï_c = 0.685^(+0.080)_(-0.072) g cmâ»Âł. With its characteristics, the outer planet (Ï_c = 0.685^(+0.080)_(-0.072) g cmâ»Âł) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Lyα transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed
TOI-836 : a super-Earth and mini-Neptune transiting a nearby K-dwarf
Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (âŒ200 mas yrâ1), low metallicity ([Fe/H]ââ0.28) K-dwarf with a mass of 0.68 ± 0.05 Mâ and a radius of 0.67 ± 0.01 Râ. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 Râ super-Earth in a 3.82 day orbit, placing it directly within the so-called âradius valleyâ. The outer planet, TOI-836 c, is a 2.59 ± 0.09 Râ mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 Mâ, while TOI-836 c has a mass of 9.6 ± 2.6 Mâ. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.Publisher PDFPeer reviewe
TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf
We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364)
using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (
mag), high proper motion ( mas yr), low metallicity
([Fe/H]) K-dwarf with a mass of M and a
radius of R. We obtain photometric follow-up
observations with a variety of facilities, and we use these data-sets to
determine that the inner planet, TOI-836 b, is a R
super-Earth in a 3.82 day orbit, placing it directly within the so-called
'radius valley'. The outer planet, TOI-836 c, is a R
mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that
TOI-836 b has a mass of M , while TOI-836 c has a mass
of M. Photometric observations show Transit Timing
Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are
no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by
an undetected exterior planet
Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
- âŠ