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Abstract

The future of exoplanet science is bright, as Transiting Exoplanet Survey Satellite (TESS) once again demonstrates
with the discovery of its longest-period confirmed planet to date. We hereby present HD 21749b (TOI 186.01), a
sub-Neptune in a 36 day orbit around a bright (V=8.1) nearby (16 pc) K4.5 dwarf. TESS measures HD 21749b to
be -

+2.61 0.16
0.17 R⊕, and combined archival and follow-up precision radial velocity data put the mass of the planet at

-
+22.7 1.9

2.2 M⊕. HD 21749b contributes to the TESS Level 1 Science Requirement of providing 50 transiting planets
smaller than 4 R⊕ with measured masses. Furthermore, we report the discovery of HD 21749c (TOI 186.02), the
first Earth-sized ( = -

+
ÅR R0.892p 0.058

0.064 ) planet from TESS. The HD 21749 system is a prime target for comparative
studies of planetary composition and architecture in multi-planet systems.

Key words: planetary systems – planets and satellites: detection – stars: individual (HD 21749, TIC 279741379)

1. Introduction

Small exoplanets are common in the Milky Way (Howard
et al. 2012; Fressin et al. 2013; Fulton et al. 2017), but for a
long time astronomers have had an incomplete picture of their
properties. The recently launched Transiting Exoplanet Survey
Satellite (TESS) is revolutionizing the field of exoplanet science
by discovering planets of all sizes around the nearest stars. The

mass, atmospheric composition, and other previously mostly
inaccessible properties of small exoplanets will be measurable
for many TESS systems. Four TESS-discovered planets smaller
than Neptune have already been announced. π Men c is a 2 R⊕

super-Earth transiting its naked-eye G0V star every 6.3 days
(Huang et al. 2018a). Because its mass is measured, π Men c
contributes to the TESS Level 1 Science Requirement of
providing 50 transiting planets smaller than 4 R⊕ with measured
masses (Ricker et al. 2015). LHS 3844b is a 1.3 R⊕ hot terrestrial
planet, orbiting its M4 dwarf star every 11 hr (Vanderspek et al.
2019). The last two (TOI 125b and c; Quinn et al. 2019) are
statistically validated sub-Neptunes orbiting a K0 dwarf with
periods of 4.65 and 9.15 days. All of these discoveries are based
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on only the first two sectors of TESS data, suggesting many more
are to be found.

Longer-period transiting planets are notoriously difficult to
find because their transit probability is lower and even if they
do transit, they do so less frequently. We know of very few
around nearby stars. Only three small ( < ÅR R4p ) planets with
measured masses are known to have orbital periods greater than
5 days and transit stars with V-band magnitudes brighter than
10: π Men c (Huang et al. 2018a), HD 219134c (Gillon et al.
2017), and HD 97658b (Dragomir et al. 2013), the latter having
the longest period of the three, at 9.5 days. Most of the
exoplanets that TESS will reveal will have orbital periods
shorter than 10 days (Sullivan et al. 2015; Barclay et al. 2018;
Huang et al. 2018b). In most parts of the sky TESS may
only observe one or two transits for longer-period planets
(Villanueva et al. 2019), making them more challenging to
detect and confirm, particularly for small planets.

In this Letter we present HD 21749b (TESS Object of
Interest 186.01), a sub-Neptune with a period of 35.61 days
that initially appeared as a single-transit planet candidate. We
also introduce a second planet in the same system (HD
21749c), with a period of 7.8 days. The host star is a bright
(V=8.1) K dwarf, located only 16 pc away, making this
system likely to satisfy the follow-up interests of many
exoplanet astronomers. In Section 2 we describe the TESS
photometry and the other observations used to confirm HD
21749b and validate HD 21749c. In Section 3 we describe our
analysis and results. We discuss the implications of our
findings and conclude in Section 4.28

2. Observations

2.1. TESS Photometry

TESS will survey nearly the entire sky over two years by
monitoring contiguous overlapping 90×24° sectors for
27 days at a time (Ricker et al. 2015). The primary mission
will complete the southern ecliptic hemisphere in its first year,
and the northern hemisphere in its second. Toward the ecliptic
poles (i.e., higher ecliptic latitudes), there is overlap between
sectors and targets can be observed for more than 27 days. This
is the case for HD 21749, which was observed in four TESS
sectors. We used the publicly available four-sector TESS data
in our analysis.

The first transit of HD 21749b was identified by both the
MIT Quick Look Pipeline (which searches for planet
candidates in the 30 minutes Full Frame Images) and the
Science Processing Operations Center (SPOC) pipeline based
at the NASA Ames Research Center (Jenkins et al. 2016). No
other matching transits were found in the publicly released data
from sectors 1 and 2. After TOI 186.01 was alerted, we
searched for archival spectroscopy of this very bright star and
found 59 High-accuracy Radial-velocity Planet Searcher
(HARPS) radial velocities (RVs) in the European Southern
Observatory (ESO) archive (see Section 2.4). A periodogram of
these RVs showed a clear signal at 35.57 days, but the TESS
photometry and the RHK index (Boro Saikia et al. 2018)
indicate a stellar rotation period of around 35 days, calling for

caution. If the strongest period in the RVs did correspond to the
planet, then we expected to see additional transits in sectors 3
and 4. Once the sector 3 data were released, we discovered that
a momentum dump29 occurred approximately 35.6 days after
the sector 1 transit (see Figure 1). We did not let this
unexpected turn of events foil our search efforts, and upon
close inspection of the light curve we succeeded in recovering a
partial transit (including egress) immediately following the
momentum dump. Finally, we observed a third transit in sector
4, thus allowing for a robust ephemeris determination (see
Section 3.3). Serendipitously, when applied to the first three
sectors of the HD 21749 light curve, the SPOC pipeline yielded
an additional planet candidate with a period of 7.9 days (TOI
186.02).
We used the 2 minute target pixel data for our analysis. The

target was on the edge of the camera, where the point-spread
function (PSF) is triangular in shape. We tried improving the
light curve precision by extracting light curves from the
publicly available target pixel stamps using different photo-
metric apertures (circles as well as irregular pixel boundaries).
We then detrended the raw light curve by fitting a basis spline
with knots spaced by 0.3 days, after excluding both 3σ outliers
and data obtained during and immediately surrounding transits
(Vanderburg & Johnson 2014). The final 2 minute cadence
light curve has an rms of 240 ppm.
Care must be taken to rule out false positives that could

masquerade as planet candidates. Both planet candidates in the
HD 21749 system pass the false-positive tests performed on the
TESS photometry: there is no evidence of secondary eclipses,
and no detectable motion of the centroid of the star on the
detector during the transit events. While a giant star (HIP
16068/TIC 279741377; R*= -

+3.15 0.09
0.12 Re) is present 22″

from HD 21749, the excellent period match between the
transits and the HD 21749 RVs rule out this neighboring star as
the source of the TOI 186.01 transit signals. If TOI 186.02
transits the giant star, it would have to be a Jupiter-sized object
as the transit events have a low impact parameter (and are thus
unlikely to be due to a grazing eclipsing binary). The
probability that the giant star blended with HD 21749 would
coincidentally also host a transiting planet is very low, but we
nevertheless explored this scenario in Section 3.2. The presence
of the neighboring star also warrants correcting the transit
depths for dilution (see Section 3.3).

2.2. Very Large Telescope (VLT) NaCo Imaging

To test for nearby stellar companions that could dilute the
light curve and bias the measured planetary radius, we used
archival data from the VLT/NaCo instrument (Lenzen et al.
2003; Rousset et al. 2003) collected in 2005. These data were
initially collected to search for planets and low-mass stellar
companions, and as such used common direct imaging
techniques to maximize the achievable contrast. Images were
collected with a 6 s exposure time, causing the central pixels of
the star to saturate. Beyond 50 mas, where the images are not
saturated, the longer integration time increases the observing

28 An independent analysis of archival High-Accuracy Radial-velocity Planet
Searcher (HARPS) radial velocities (RVs) of HD 21749 has been reported by
Trifonov et al. (2019). Our Letter differs in scope in that we confirm HD
21749b using TESS photometry, HARPS and Planet Finder Spectrograph
(PFS) RVs, and we report an additional planet in the system.

29
“Momentum dumps” consist of resetting the momentum wheel speed every

2.5–3 days and are used to mitigate the noisier-than-expected measurements of the
spacecraft momentum wheel speeds at higher wheel speeds (see https://archive.
stsci.edu/files/live/sites/mast/files/home/missions-and-data/active-missions/tess
/_documents/TESS_Instrument_Handbook_v0.1.pdf for details). Momentum
dumps require brief interruptions to Fine Pointing mode, during which an increase
in the flux dispersion is noticeable in the science data, so data acquired during these
intervals are excluded from our analysis.

2
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efficiency and reduces read noise. To complement these
saturated images, a small number of images with a shorter
exposure (1.9 s) were collected in which the target star is
unsaturated and its flux can thus be calibrated. In addition,
images were collected simultaneously at multiple wavelengths,
and sequentially at multiple telescope rotations, such that
variations in the PSF could be used to separate stellar speckle
noise and companion flux (Marois et al. 2006). For simplicity,
in this Letter we used only the 1.6 μm data in the upper-left
quadrant of the chip, and simply co-added the aligned data.
Although this reduces the absolute contrast reached, it is
sufficient for the purposes of this analysis.

We used the first set of 10 saturated frames collected on
2005 November 29 (each 28×6 s)—the conditions degrade in
the second set of 10 frames—and two unsaturated frames

(16×1.8 s) taken immediately before and after this. We
followed a standard data reduction process: we subtracted a
dark/sky background, cropped the data to the relevant part of
the chip, flat-fielded, aligned images based on the stellar
position, and derotated frames to align the north image before
combining the frames into a single reduced image. To
determine the sensitivity of this image, we inserted scaled
copies of the unsaturated PSF, and recovered these with
standard aperture photometry. A sensitivity curve and an image
of the target are shown in Figure 2. The target appears single to
the resolution of these images, with no companions detected
within the field of view, which extends to at least 2″ from the
target in every direction. Beyond this separation Gaia is
sensitive to companions that are ∼6 mag fainter than the host,
and a companion of this magnitude would change the measured

Figure 1. TESS photometry of HD 21749. Top: raw light curve spanning four sectors. An interruption in communications occurred between the instrument and the
spacecraft between 1418.54 and 1421.21. It was followed by a temperature increase due to heaters being turned on. Once data collection resumed, the heaters were
turned off, but the camera temperature took about three days to return to nominal, causing the sharp feature in flux seen between 1421 and 1424. This effect was easily
removed by our detrending procedure (see Sections 2.1 and 3.3 for details). Middle: detrended light curve. Transits of HD 21749b and HD 21749c are shown in
magenta and orange, respectively. Bottom: phase-folded transits of HD 21749b (left) and HD 21749c (right). In both plots, the binned light curves and best-fit transit
models are plotted with black points and green lines, respectively.
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planet radius by 0.2%. We conclude that the measured radii of
HD 21749b and HD 21749c are unbiased by nearby stars.

2.3. LCO–NRES and CORALIE Spectroscopy

We used the Las Cumbres Observatory (LCO; Brown et al.
2013) Network of Echelle Spectrographs (NRES; Siverd et al.
2016) to obtain two spectra of the neighboring star TIC
279741377, and analyzed them with SpecMatch (Petigura et al.
2017). The two spectra had a signal-to-noise ratio (S/N) of 59
and 69, and show RVs consistent at the 100 m s−1 level, thus
ruling out an eclipsing binary on TIC 279741377.

We obtained additional spectroscopy with the CORALIE
spectrograph (Queloz et al. 2000) on the Swiss Euler 1.2 m
telescope at La Silla Observatory in Chile. The spectra were
collected at phases 0.18 and 0.82, near the expected RV
maximum and minimum. Cross correlations were performed
with a weighted K5 binary mask from which telluric and
interstellar lines were removed (Pepe et al. 2002).

The NRES and CORALIE RVs are shown in Figure 3.

2.4. HARPS Spectroscopy

Prior to this work, we had collected 59 observations of HD
21749 with HARPS (Mayor et al. 2003) on the ESO 3.6 m
telescope at La Silla Observatory in Chile. Of these, 55 were
obtained between 2003 and 2009 by the original HARPS
guaranteed time observation (GTO) programs to search for
planets, and four measurements were obtained by another
program in 2016. These observations are publicly available on
the ESO Science Archive Facility.

We extracted precision RVs from these R∼115,000 spectra
and utilized them to both rule out an eclipsing binary as the
origin of the transit signal, and to measure the mass of HD
21749b. The data taken in 2016 have slightly different
coordinates and proper motion, and the RVs were extracted
using a template for a different spectral type compared to the
data obtained by the HARPS GTO. We homogenized all the
observations to account for these differences, and re-reduced all
the data using the latest HARPS pipeline.30 In addition, the
2016 observations were gathered after an upgrade to the

instrument that involved a change of some optical fibers
(Lo Curto et al. 2015). This modification induced a few m s−1

offset in RV that is dependent on the stellar spectral type. It is
difficult to model this offset, and the best option so far is to fit
for an offset between the HARPS data taken before and after
this upgrade (see Section 3.3).

2.5. PFS Spectroscopy

The second PRV data set presented in this work comes from
the iodine-fed Planet Finder Spectrograph (Crane et al. 2010)
on the 6.5 m Magellan II telescope at Las Campanas
Observatory in Chile. HD 21749 was observed with PFS, with
somewhat irregular sampling, as part of the long-term
Magellan Planet Search Program between 2010 January and
2018 October, for a total of 48 RVs (45 epochs). We then
began a high-cadence observing campaign purposely for TESS
follow up in 2018 December, adding 34 more velocities (nine
more epochs). The iodine data prior to 2018 were taken
through a 0 5 slit resulting in R∼80,000, and those from
2018 were taken through a 0 3 slit, resulting in R∼130,000;
the iodine-free template was taken through the 0 3 slit. The
PFS detector and observing strategy changed in 2018 February,
and the jitter in the 2018 observations decreased significantly.
Exposure times ranged from ∼150 to ∼600 s, resulting in S/N
of ∼100–200. All PFS data are reduced with a custom IDL
pipeline that flat fields, removes cosmic rays, and subtracts
scattered light. Further details about the iodine-cell RV
extraction method can be found in Butler et al. (1996), and
the PFS RVs used in this Letter can be found on ExoFOP-
TESS.31

3. Analysis and Results

3.1. Stellar Parameters

We performed a fit to the broadband spectral energy
distribution (SED), following the methodology described in
Stassun & Torres (2016). We adopted the fluxes published in all-
sky photometric catalogs: Tycho-2 BTVT, 2MASS JHKS, and
WISE1–4. These flux measurements span the wavelength range
0.4–22 μm. We assumed solar metallicity based on values in the
PASTEL catalog (Soubiran et al. 2016), and we fit Kurucz
atmosphere models (Kurucz 2013) with the free parameters being
the effective temperature, the overall flux normalization, and the
extinction, the latter limited to the maximum line-of-sight value

Figure 2. Sensitivity curve for the high-resolution adaptive optic (AO) imaging
of the target with VLT/NaCo. The inset image is 4″×4″. No companions are
detected within the field of view, and the target appears single to the limit of the
imaging resolution.

Figure 3. NRES (open circles) and CORALIE (filled circles) RVs for TIC
279741377.

30 The consistently reduced set of HARPS RVs can be obtained through the
DACE platform: dace.unige.ch. 31 https://exofop.ipac.caltech.edu/tess/target.php?id=279741379
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from the dust maps of Schlegel et al. (1998). The resulting SED
fit has a reduced χ2=3.4, Teff=4640±100K, = -

+A 0.14V 0.04
0.00,

Fbol=(2.43±0.11)×10
−8 ergs−1cm−2. With the Gaia second

data release parallax (Gaia Collaboration et al. 2018) corrected for
systematic offset from Stassun & Torres (2018), this gives
 =  R R0.695 0.030 . Note that we have used here the

simple 1/π distance estimate with symmetric errors; in this case the
parallax is so large and the relative uncertainty so small that this
simple estimate is nearly identical to the Bayesian estimate with
asymmetric errors (Bailer-Jones et al. 2018). We can estimate the
stellar mass from the empirical relations of Torres et al. (2010),
which gives Må=0.73±0.07Me. Together with the stellar
radius, this provides an empirical estimate of the stellar mean
density, ρå=3.09±0.23 gcm

−3.
We also derived the stellar age, employing the PARAM

online Bayesian interface (da Silva et al. 2006), which
interpolates the apparent V-band magnitude, parallax, effective
temperature, and metallicity onto PARSEC stellar evolutionary
tracks (Bressan et al. 2012). We employed the initial mass
function from Chabrier (2001) and a constant star formation
rate, obtaining an age of 3.8±3.7 Gyr.

The top section of Table 1 lists the stellar parameters.

3.2. Validation of HD 21749c

In this section we rule out the remaining false-positive
scenario for HD 21749c. The non-grazing impact parameter of
the TOI 186.02 transits and the NRES and CORALIE RVs of
TIC 279741377 (Figure 3) rule out that the candidate is an
eclipsing binary on this star. If TOI 186.02 were a planet
transiting TIC 279741377, it would have a radius of 1.3 RJ, for
which the mass–radius relations of Ning et al. (2018) suggest a
mass of ≈1 MJ. We used the Teff, [Fe/H] and logg values from
the SpecMatch analysis of the NRES spectra together with
isochrone modeling (as described in Johnson et al. 2017) to
obtain a stellar mass for TIC 279741377 of 1.86 pm 0.17 M .
We determined that a 1 MJ planet around this star would result
in an RV semi-amplitude of 65 m s−1, which is ruled out by the
CORALIE RVs. Moreover, the equatorial transit duration in
this scenario (assuming a circular orbit) would be 9.2 hr–3.7
times longer than the transit of TOI 186.02. To match the
transit duration of TOI 186.02, the planet would have to transit
TIC 279741377 with an impact parameter of 0.96, which is
inconsistent with the value we find for TOI 186.02.

3.3. Joint Photometry and Radial Velocity Fit

We further detrended the spline-corrected light curves
(described in Section 2.1) by training a Gaussian Process
(GP; Foreman-Mackey et al. 2017) on the out-of-transit data,
and subsequently evaluating it on the full light curve (Günther
et al. 2018). We conservatively discarded the last transit of HD
21749c because it occurred during a momentum dump.
We then performed two independent analyses that jointly fitted
the TESS photometry with the HARPS and PFS RVs, using
a two-planet model with a long-term trend (ġ). We used
EXOFASTv2 (Eastman et al. 2013; Eastman 2017) and allesfitter
(M. Güenther & T. Daylan 2019, in preparation). EXOFASTv2 is
based on a differential evolution Markov Chain Monte Carlo
(MCMC) algorithm that uses error scaling. allesfitter is an
inference framework that unites the packages ellc (light

curve and RV models; Maxted 2016), dynesty (static and
dynamic nested sampling;https://github.com/joshspeagle/
dynesty), emcee (MCMC sampling; Foreman-Mackey et al.
2013), and celerite (GP models; Foreman-Mackey et al.
2017) to model systematic noise in the photometry. We used
allesfitter with nested sampling instead of MCMC.
We fitted for constant offsets and jitter terms (added in

quadrature to the instrumental uncertainties) for each of the
four RV data sets that we used: HARPS 1 (pre-upgrade),
HARPS 2 (post-upgrade), PFS 1 (pre-upgrade), PFS 2 (post-
upgrade). We used the stellar mass, radius, metallicity, and
temperature values listed in Section 3.1 as Gaussian priors for
both analyses. We also fit for dilution of the transit signal due
to the neighboring star, for which we used the contamination
ratio from TIC V7 (Stassun et al. 2018) and 10% of its value as
a Gaussian prior. We did not use any other Gaussian priors.
We note that EXOFASTv2 determines and uses quadratic
limb-darkening coefficients interpolated from the Claret tables
for TESS (Claret 2017), while allesfitter uniformly samples
the quadratic limb-darkening coefficients following Kipping
(2013).
The best-fit parameter values are consistent between our two

independent analyses. To make it easier to reproduce our
results, we report in this work the values from the EXOFASTv2
fit (see Table 1). The transit and RV observations for each
planet, together with the best-fit models, are shown in Figures 1
and 4, respectively. We do not measure a statistically
significant RV semi-amplitude for planet c, on which we
instead set a 3σ upper limit of ∼1.43 m s−1.
An additional independent analysis of the RV measurements

using RadVel (Fulton et al. 2018) with the periods fixed to
35.608 and 7.7882 days and Tc for each planet fixed to the
TESS-determined values, gives results for K, e and ω that are
fully consistent with those in Table 1.
Finally, as an experiment before the sectors 3 and 4 data

became available, we performed a joint analysis of the sector 1
transit together with the HARPS RVs. The period determina-
tion of this fit was driven by the RVs, and the transit only
poorly constrained the time of inferior conjunction because of
the long baseline between the RV and TESS measurements.
Notably, the fit preferred a higher eccentricity (which is no
longer allowed when including the second and third transits,
and the PFS RVs), and a time of periastron passage offset by 10
days from the true value. The best-fit period was also shorter
and the best-fit mass higher than the values obtained when
including all transits.
Our findings underline the need for at least two transits (not

necessarily all from TESS) to confirm a TESS planet and
determine its properties adequately. A single transit is
insufficient for most systems, even if RVs are available.

3.4. Stellar Activity

The ( )Rlog HK value for HD 21749 suggests a stellar rotation
period of 34.5±7 days (Mamajek & Hillenbrand 2008). We
investigate this further by extracting SHK and Hα indices from
the PFS (pre-upgrade only) and HARPS spectra. Figure 5
shows Lomb–Scargle periodograms of these indices (second
and third panels from the top). In the 10–100 day range, the
highest peak in both of these HARPS activity indicators
corresponds to 37.2 days, which we attribute to the rotation of
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Table 1
Median Values and Uncertainties for the HD 21749 System

Parameter Value

Catalog Stellar Information
R.A. Right Ascension (h:m:s; J2015.5) 03:27:00.045
Decl. Declination (d:m:s; J2015.5) −63:30:00.60
λ Ecliptic Longitude (deg) 352.8828
β Ecliptic Latitude (deg) −73.8346
HD ID Henry Draper Catalog ID 21749
TIC ID TESS Input Catalog ID 279741379
TOI ID TESS Object of Interest ID 186.01
Photometric Stellar Properties
V mag Apparent V-band Magnitude 8.1
TESS mag Apparent TESS-band Magnitude 6.95
Stellar Parameters
D Distance (pc) 16.33±0.007
M* Mass ( ☉M ) 0.73±0.07

R* Radius ( ☉R ) 0.695±0.030

L* Luminosity ( ☉L ) 0.20597±0.00016

*
r Density (cgs) -

+3.03 0.47
0.50

glog Surface Gravity (cgs) -
+4.613 0.061

0.052

Teff Effective Temperature (K) 4640±100
[Fe/H] Metallicity (dex) 0.003±0.060
Age Stellar Age (Gyr) 3.8±3.7
Markov Chain Monte Carlo (MCMC) Fit TESS Bandpass Wavelength Parameters
u1 Linear Limb-darkening Coeff. 0.492±0.026
u2 Quadratic Limb-darkening Coeff. -

+0.170 0.025
0.026

AD
a Dilution from Neighboring Stars 0.121±0.012

MCMC Fit Telescope Parameters
ġ RV Slope (m s−1 day−1) -

+0.00157 0.00068
0.00070

grel,1 Relative RV Offset HARPS 1 (m s−1) -
+59608.99 0.64

0.66

grel,2 Relative RV Offset HARPS 2 (m s−1) -
+59619.1 3.3

3.2

grel,3 Relative RV Offset PFS 1 (m s−1) −4.6±2.0

grel,4 Relative RV Offset PFS 2 (m s−1) - -
+5.3 3.1

3.0

sJ,1 RV Jitter HARPS 1 (m s−1) -
+4.17 0.41

0.47

sJ,2 RV Jitter HARPS 2 (m s−1) -
+1.7 1.7

4.9

sJ,3 RV Jitter PFS 1 (m s−1) -
+4.63 0.53

0.65

sJ,4 RV Jitter PFS 2 (m s−1) -
+1.27 0.29

0.42

HD 21749b HD 21749c
MCMC Fit Planetary Parameters
P Period (days) -

+35.61253 0.00062
0.00060

-
+7.78993 0.00044

0.00051

T0 Optimal Conjunction Time (BJDTDB) -
+2458385.92502 0.00055

0.00054
-
+2458371.2287 0.0015

0.0016

i Inclination (Degrees) -
+89.33 0.11

0.15
-
+88.90 0.37

0.50

*R RP Radius of Planet in Stellar Radii -
+0.0350 0.0010

0.0011
-
+0.01196 0.00052

0.00051

K RV Semi-amplitude (m s−1) -
+5.51 0.33

0.41 <1.43b

*we cos L −0.025±0.051 L

*we sin L -
+0.179 0.085

0.078 L

Derived Planetary Parameters

*a R Semimajor Axis in Stellar Radii -
+60.1 3.3

3.2 21.8±1.2

RP Radius (R⊕) -
+2.61 0.16

0.17
-
+0.892 0.058

0.064

a Semimajor Axis (au) -
+0.1915 0.0063

0.0058
-
+0.0695 0.0023

0.0021

Teq Equilibrium Temperature (K) -
+422 14

15
-
+701 23

25

e Eccentricity -
+0.188 0.078

0.076 L

*w Argument of Periastron (Degrees) -
+98 17

21 L
TP Time of Periastron (BJDTDB) -

+2458350.8 1.1
1.6

-
+2458332.2789 0.0027

0.0026

MP Mass (M⊕) -
+22.7 1.9

2.2 <3.70b

τ Ingress/egress Transit Duration (hours) -
+0.163 0.034

0.043
-
+0.0358 0.0046

0.0055

T14 Total Transit Duration (hours) -
+3.230 0.038

0.041
-
+2.515 0.086

0.077

b Transit Impact Parameter -
+0.587 0.15

0.097
-
+0.42 0.18

0.11

rP Density (cgs) -
+7.0 1.3

1.6 <31.93b

log gP Surface Gravity -
+3.514 0.069

0.067 <3.68b

Notes.
a AD is defined as +( )F F F2 1 2 , where F2 is the flux of the target and F1 is the flux of the neighboring contaminating star.
b Limits denote the 99.73% (3σ) upper confidence interval.
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the star. These peaks also do not overlap with the orbital period
of HD 21749b (marked by the red lines).

We also obtained Kilodegree Extremely Little Telescope
(KELT; Pepper et al. 2004) photometry of HD 21749. The star
has been monitored by KELT as part of its long-term transit
survey of bright stars. The KELT light curve for HD 21749
spans ∼3.3 yr, contains 7848 individual points (taken between
2010 February and 2013 June), and has an rms of ∼0.0098
mag. A Lomb–Scargle periodogram of the KELT photometry
finds the most significant peak at a period of 38.954 days (see
the bottom panel of Figure 5).

More data will help to better determine the stellar rotation
period, but the existing photometric and spectroscopic data sets
suggest that it is longward of planet b’s period. Importantly, the
RV periodogram (top panel of Figure 5) shows the strongest
peak at 35.6 days (the period of HD 21749b) but does not show
significant (above 0.01% false alarm probability) power in the
37–39 day period range.

Nevertheless, we employed Equation (2) of Vanderburg
et al. (2016) to estimate the magnitude of systematic errors due
to the stellar variability (ss,RV) that could affect the RV signals
of HD 21749b and HD 21749c. We used the standard deviation
of the raw TESS light curve (s = 0.0013s TESS, ) rather than its
peak-to-peak amplitude (Fpps TESS, ), and vsini=1.04 km s−1

(derived from the HARPS spectra) to obtain s » 1.3s,RV m s−1.
Therefore, while we do not expect the RV signal of HD

21749b to be strongly affected by stellar variability, the
uncertainties on the K values reported in Table 1 could be
somewhat underestimated.

4. Discussion and Conclusion

In this Letter we announce the discovery and confirmation of
HD 21749b, the second TESS Level 1 planet (RP<4 R⊕ and a
measured mass) to date, and the longest-period TESS planet
confirmed so far. We also report the discovery of HD 21749c,
TESS’ first Earth-sized planet.

Figure 4. Relative RV measurements and best-fit models for HD 21749. Top: complete time series including HARPS pre-upgrade (dark blue open circles), HARPS
post-upgrade (dark blue points), PFS pre-upgrade (cyan open circles), and PFS post-upgrade (cyan points) data. For all RVs, the error bars are the quadrature sum of
the instrument jitter terms and the measurement uncertainties. The best-fit constant offsets have been subtracted, and the gray line shows the best-fit two-planet RV
model. Bottom: phase-folded RVs for planet b (left) and planet c (right), with residuals shown below each plot. Point colors are as in the top panel, with the addition of
red open circles showing the average velocities binned in 0.08 intervals of orbital phase. Each planet’s best-fit model is shown with a gray line, with the Keplerian
orbital model for the other planet and the long-term trend subtracted.
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HD 21749b is a -
+

ÅR2.61 0.16
0.17 planet. Using HARPS and

PFS RVs, we measured a mass of -
+

ÅM22.7 1.9
2.2 . Its density of

-
+7.0 1.3

1.6 g cm−3 makes it one of the two densest planets with a mass
above 15 ÅM . The other is K2-66b (MP of 21.3±3.6M⊕, ρp of
7.8±2.7 g cm−3; Sinukoff et al. 2017). K2-66b has a density that
is consistent with a rocky composition, but it is also less massive

than HD 21749b. On the other hand, the density of HD 21749b
indicates that it is likely surrounded by a substantial atmosphere.
By measuring the density of these two planets (and other similar
planets that TESS may find) more precisely, we can begin to
observationally constrain the maximum core mass a planet can
reach during its formation before accreting a volatile envelope.

Figure 5. Lomb–Scargle periodograms of, from top to bottom: the complete set of RVs, the SHK index, the aH index and the Kilodegree Extremely Little Telescope
(KELT) photometry. Red and magenta lines mark the periods of HD 21749b and HD 21749c, respectively.

8

The Astrophysical Journal Letters, 875:L7 (10pp), 2019 April 20 Dragomir et al.



According to the transmission spectroscopy metric (TSM) of
Kempton et al. (2018), HD 21749b is not an ideal target for
atmospheric characterization with the James Webb Space
Telescope (JWST). However, the TSM is based on 10 hr of
JWST observing time. TESS sub-Neptunes transiting bright K
dwarfs and with relatively low equilibrium temperature may be
scarce. Therefore, HD 21749b could easily warrant more
observing time, particularly to search for species expected in
the atmospheres of cooler planets (i.e., methane). It may also be
possible to measure HD 21749b’s spin/orbit obliquity via the
Rossiter McLaughlin effect with either Echelle SPectrograph for
Rocky Exoplanets and Stable Spectroscopic Observations
(ESPRESSO; Pepe et al. 2010) or precise spectrographs planned
for the Extremely Large Telescopes.

HD 21749c is an Earth-sized ( = -
+

ÅR R0.892p 0.058
0.064 ) planet.

Its mass is expected to be ∼2.5M⊕ according to the mass–
radius relations of Ning et al. (2018) (though the two
approximately Earth-sized planets for which we have well-
constrained masses so far—Venus and Earth—have masses of
1 M⊕ or less). This would give rise to a RV semi-amplitude of
∼1.0 m s−1, a challenging measurement for the RV spectro-
graphs presented here, but perhaps a feasible measurement with
a dedicated VLT/ESPRESSO campaign.

Finally, we emphasize that this work used mainly existing
spectroscopic and photometric data, publicly available (as for
Huang et al. 2018b and Vanderspek et al. 2019) or generously
contributed by multiple ongoing surveys, to confirm and
characterize the planets presented in this Letter. We postulate
that this approach has the potential to be successful for other
TESS planet candidates as well.
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