2,523 research outputs found

    The genomic basis of the plant island syndrome in Darwin’s giant daisies

    Get PDF
    The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the ‘plant island syndrome’, include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin’s giant daisies

    Search for a Higgs Boson Decaying to Weak Boson Pairs at LEP

    Get PDF
    A Higgs particle produced in association with a Z boson and decaying into weak boson pairs is searched for in 336.4 1/pb of data collected by the L3 experiment at LEP at centre-of-mass energies from 200 to 209 GeV. Limits on the branching fraction of the Higgs boson decay into two weak bosons as a function of the Higgs mass are derived. These results are combined with the L3 search for a Higgs boson decaying to photon pairs. A Higgs produced with a Standard Model e+e- --> Zh cross section and decaying only into electroweak boson pairs is excluded at 95% CL for a mass below 107 GeV

    Measurement of the mass and lifetime of the Ωb−\Omega_b^- baryon

    Get PDF
    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb−1^{-1} collected by LHCb at s=7\sqrt{s}=7 and 8 TeV, is used to reconstruct 63±963\pm9 Ωb−→Ωc0π−\Omega_b^-\to\Omega_c^0\pi^-, Ωc0→pK−K−π+\Omega_c^0\to pK^-K^-\pi^+ decays. Using the Ξb−→Ξc0π−\Xi_b^-\to\Xi_c^0\pi^-, Ξc0→pK−K−π+\Xi_c^0\to pK^-K^-\pi^+ decay mode for calibration, the lifetime ratio and absolute lifetime of the Ωb−\Omega_b^- baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for τΩb−\tau_{\Omega_b^-} only). A measurement is also made of the mass difference, mΩb−−mΞb−m_{\Omega_b^-}-m_{\Xi_b^-}, and the corresponding Ωb−\Omega_b^- mass, which yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2. \end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm

    Observation of two new Ξb−\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π−\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb−1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξbâ€Č−\Xi_b^{\prime -} and Ξb∗−\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξbâ€Č−)−m(Ξb0)−m(π−)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb∗−)−m(Ξb0)−m(π−)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb∗−)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξbâ€Č−)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV

    Get PDF
    Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decreas

    Constraints on the unitarity triangle angle Îł\gamma from Dalitz plot analysis of B0→DK+π−B^0 \to D K^+ \pi^- decays

    Get PDF
    The first study is presented of CP violation with an amplitude analysis of the Dalitz plot of B0→DK+π−B^0 \to D K^+ \pi^- decays, with D→K+π−D \to K^+ \pi^-, K+K−K^+ K^- and π+π−\pi^+ \pi^-. The analysis is based on a data sample corresponding to 3.0 fb−13.0\,{\rm fb}^{-1} of pppp collisions collected with the LHCb detector. No significant CP violation effect is seen, and constraints are placed on the angle Îł\gamma of the unitarity triangle formed from elements of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. Hadronic parameters associated with the B0→DK∗(892)0B^0 \to D K^*(892)^0 decay are determined for the first time. These measurements can be used to improve the sensitivity to Îł\gamma of existing and future studies of the B0→DK∗(892)0B^0 \to D K^*(892)^0 decay.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-059.html; updated to correct figure 9 (numerical results unchanged

    Observation of the Bs0→J/ψϕϕB_s^0 \rightarrow J/\psi \phi \phi decay

    Get PDF
    The Bs0→J/ψϕϕB_s^0 \rightarrow J/\psi \phi \phi decay is observed in pppp collision data corresponding to an integrated luminosity of 3 fb−1^{-1} recorded by the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV. This is the first observation of this decay channel, with a statistical significance of 15 standard deviations. The mass of the Bs0B_s^0 meson is measured to be 5367.08 ± 0.38 ± 0.155367.08\,\pm \,0.38\,\pm\, 0.15 MeV/c2^2. The branching fraction ratio B(Bs0→J/ψϕϕ)/B(Bs0→J/ψϕ)\mathcal{B}(B_s^0 \rightarrow J/\psi \phi \phi)/\mathcal{B}(B_s^0 \rightarrow J/\psi \phi) is measured to be 0.0115\,\pm\, 0.0012\, ^{+0.0005}_{-0.0009}. In both cases, the first uncertainty is statistical and the second is systematic. No evidence for non-resonant Bs0→J/ψϕK+K−B_s^0 \rightarrow J/\psi \phi K^+ K^- or Bs0→J/ψK+K−K+K−B_s^0 \rightarrow J/\psi K^+ K^- K^+ K^- decays is found.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-033.htm

    Search for hidden-sector bosons in B0 ⁣→K∗0ÎŒ+Ό−B^0 \!\to K^{*0}\mu^+\mu^- decays

    Get PDF
    A search is presented for hidden-sector bosons, χ\chi, produced in the decay B0 ⁣→K∗(892)0χ{B^0\!\to K^*(892)^0\chi}, with K∗(892)0 ⁣→K+π−K^*(892)^0\!\to K^{+}\pi^{-} and Ï‡â€‰âŁâ†’ÎŒ+Ό−\chi\!\to\mu^+\mu^-. The search is performed using pppp-collision data corresponding to 3.0 fb−1^{-1} collected with the LHCb detector. No significant signal is observed in the accessible mass range 214≀m(χ)≀4350214 \leq m({\chi}) \leq 4350 MeV, and upper limits are placed on the branching fraction product B(B0 ⁣→K∗(892)0χ)×B(Ï‡â€‰âŁâ†’ÎŒ+Ό−)\mathcal{B}(B^0\!\to K^*(892)^0\chi)\times\mathcal{B}(\chi\!\to\mu^+\mu^-) as a function of the mass and lifetime of the χ\chi boson. These limits are of the order of 10−910^{-9} for χ\chi lifetimes less than 100 ps over most of the m(χ)m(\chi) range, and place the most stringent constraints to date on many theories that predict the existence of additional low-mass bosons.Comment: All figures and tables, along with supplementary material, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-036.htm

    A new algorithm for identifying the flavour of Bs0B_s^0 mesons at LHCb

    Get PDF
    A new algorithm for the determination of the initial flavour of Bs0B_s^0 mesons is presented. The algorithm is based on two neural networks and exploits the bb hadron production mechanism at a hadron collider. The first network is trained to select charged kaons produced in association with the Bs0B_s^0 meson. The second network combines the kaon charges to assign the Bs0B_s^0 flavour and estimates the probability of a wrong assignment. The algorithm is calibrated using data corresponding to an integrated luminosity of 3 fb−1^{-1} collected by the LHCb experiment in proton-proton collisions at 7 and 8 TeV centre-of-mass energies. The calibration is performed in two ways: by resolving the Bs0B_s^0-Bˉs0\bar{B}_s^0 flavour oscillations in Bs0→Ds−π+B_s^0 \to D_s^- \pi^+ decays, and by analysing flavour-specific Bs2∗(5840)0→B+K−B_{s 2}^{*}(5840)^0 \to B^+ K^- decays. The tagging power measured in Bs0→Ds−π+B_s^0 \to D_s^- \pi^+ decays is found to be (1.80±0.19(stat)±0.18(syst))(1.80 \pm 0.19({\rm stat}) \pm 0.18({\rm syst}))\%, which is an improvement of about 50\% compared to a similar algorithm previously used in the LHCb experiment.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-056.htm
    • 

    corecore