50 research outputs found

    Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy.

    Get PDF
    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant

    Down syndrome and leukemia: from basic mechanisms to clinical advances

    Get PDF
    Children with Down syndrome (DS, trisomy 21) are at a significantly higher risk of developing acute leukemia compared to the overall population. Many studies investigating the link between trisomy 21 and leukemia initiation and progression have been conducted over the last two decades. Despite improved treatment regimens and significant progress in iden - tifying genes on chromosome 21 and the mechanisms by which they drive leukemogenesis, there is still much that is unknown. A focused group of scientists and clinicians with expertise in leukemia and DS met in October 2022 at the Jérôme Lejeune Foundation in Paris, France for the 1st International Symposium on Down Syndrome and Leukemia. This meeting was held to discuss the most recent advances in treatment regimens and the biology underlying the initiation, progression, and relapse of acute lymphoblastic leukemia and acute myeloid leukemia in children with DS. This review provides a summary of what is known in the field, challenges in the management of DS patients with leukemia, and key questions in the field

    KRAS activation in gastric cancer stem-like cells promotes tumor angiogenesis and metastasis

    Get PDF
    Abstract Our previous work showed that KRAS activation in gastric cancer cells leads to activation of an epithelial-to-mesenchymal transition (EMT) program and generation of cancer stem-like cells (CSCs). Here we analyze how this KRAS activation in gastric CSCs promotes tumor angiogenesis and metastasis. Gastric cancer CSCs were found to secrete pro-angiogenic factors such as vascular endothelial growth factor A (VEGF-A), and inhibition of KRAS markedly reduced secretion of these factors. In a genetically engineered mouse model, gastric tumorigenesis was markedly attenuated when both KRAS and VEGF-A signaling were blocked. In orthotropic implant and experimental metastasis models, silencing of KRAS and VEGF-A using shRNA in gastric CSCs abrogated primary tumor formation, lymph node metastasis, and lung metastasis far greater than individual silencing of KRAS or VEGF-A. Analysis of gastric cancer patient samples using RNA sequencing revealed a clear association between high expression of the gastric CSC marker CD44 and expression of both KRAS and VEGF-A, and high CD44 and VEGF-A expression predicted worse overall survival. In conclusion, KRAS activation in gastric CSCs enhances secretion of pro-angiogenic factors and promotes tumor progression and metastasis.This study was funded by NIH/NCI grant P30 CA008748, the DeGregorio Family Foundation, and Stand Up To Cancer

    Roles of Arrest-Defective Protein 1225 and Hypoxia-Inducible Factor 1α in Tumor Growth and Metastasis

    Get PDF
    Background Vascular endothelial growth factor A (VEGFA), a critical mediator of tumor angiogenesis, is a well-characterized target of hypoxia-inducible factor 1 (HIF-1). Murine arrest-defective protein 1A (mARD1A225) acetylates HIF-1??, triggering its degradation, and thus may play a role in decreased expression of VEGFA.Methods We generated ApcMin/+/mARD1A225 transgenic mice and quantified growth of intestinal polyps. Human gastric MKN74 and murine melanoma B16F10 cells overexpressing mARD1A225 were injected into mice, and tumor growth and metastasis were measured. VEGFA expression and microvessel density in tumors were assessed using immunohistochemistry. To evaluate the role of mARD1A 225 acetylation of Lys532 in HIF-1??, we injected B16F10-mARD1A225 cell lines stably expressing mutant HIF-1??/K532R into mice and measured metastasis. All statistical tests were two-sided, and P values less than. 05 were considered statistically significant.Results ApcMin/+/mARD1A225 transgenic mice (n = 25) had statistically significantly fewer intestinal polyps than Apc Min/+ mice (n = 21) (number of intestinal polyps per mouse: Apc Min/+ mice vs ApcMin/+/mARD1A225 transgenic mice, mean = 83.4 vs 38.0 polyps, difference = 45.4 polyps, 95% confidence interval [CI] = 41.8 to 48.6; P <. 001). The growth and metastases of transplanted tumors were also statistically significantly reduced in mice injected with mARD1A225-overexpressing cells than in mice injected with control cells (P <. 01). Moreover, overexpression of mARD1A 225 decreased VEGFA expression and microvessel density in tumor xenografts (P <. 04) and ApcMin/+ intestinal polyps (P =. 001). Mutation of lysine 532 of HIF-1?? in B16F10-mARD1A225 cells prevented HIF-1?? degradation and inhibited the antimetastatic effect of mARD1A225 (P <. 001).Conclusion mARD1A225 may be a novel upstream target that blocks VEGFA expression and tumor-related angiogenesis

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Circulating Endothelial Progenitor Cells Are Up-Regulated in a Mouse Model of Endometriosis

    Get PDF
    Endometriosis is a debilitating disease characterized by the growth of ectopic endometrial tissue. It is widely accepted that angiogenesis plays an integral part in the establishment and growth of endometriotic lesions. Recent data from a variety of angiogenesis-dependent diseases suggest a critical role of bone marrow–derived endothelial progenitor cells (EPCs) in neovascularization. In this study we examined the blood levels of EPCs and mature circulating endothelial cells in a mouse model of surgically induced endometriosis. Fluorescence-activated cell sorting analysis revealed elevated levels of EPCs in the blood of mice with endometriosis compared with control subject that underwent a sham operation. EPC concentrations positively correlated with the amount of endometriotic tissue and peaked 1 to 4 days after induction of disease. In a green fluorescent protein bone marrow transplant experiment we found green fluorescent protein–positive endothelial cells incorporated into endometriotic lesions but not eutopic endometrium, as revealed by flow cytometry and immunohistochemistry. Finally, treatment of endometriosis-bearing mice with the angiogenesis inhibitor Lodamin, an oral nontoxic formulation of TNP-470, significantly decreased EPC levels while suppressing lesion growth. Taken together, our data indicate an important role for bone marrow–derived endothelial cells in the pathogenesis of endometriosis and support the potential clinical use of anti-angiogenic therapy as a novel treatment modality for this disease

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    The cautionary tale of side effects of chronic Notch1 inhibition

    No full text
    Aberrant Notch1 signaling is implicated in several types of cancer. Therefore, Notch signaling pathways are important anticancer targets. Pan–Notch receptor inhibition is associated with numerous complications; thus, selective Notch receptor inhibition has been pursued. Studies have shown minimal side effects with short-term blockade of either Notch1 or its ligand Delta-like 4, but long-term side effects were not investigated. In this issue of the JCI, Liu et al. use mouse models to demonstrate the consequence of long-term Notch1 inhibition. They present evidence that chronic Notch1 inhibition leads to vascular tumors in the liver and decreased survival, which suggests that Notch1 therapies should be reevaluated
    corecore