597 research outputs found
Overexpression of the Replicative Helicase in Escherichia coli Inhibits Replication Initiation and Replication Fork Reloading
Replicative helicases play central roles in chromosome duplication and their assembly onto DNA is regulated via initiators and helicase loader proteins. The Escherichia coli replicative helicase DnaB and the helicase loader DnaC form a DnaB6-DnaC6 complex that is required for loading DnaB onto single-stranded DNA. Overexpression of dnaC inhibits replication by promoting continual rebinding of DnaC to DnaB and consequent prevention of helicase translocation. Here we show that overexpression of dnaB also inhibits growth and chromosome duplication. This inhibition is countered by co-overexpression of wild-type DnaC but not of a DnaC mutant that cannot interact with DnaB, indicating that a reduction in DnaB6-DnaC6 concentration is responsible for the phenotypes associated with elevated DnaB concentration. Partial defects in the oriC-specific initiator DnaA and in PriA-specific initiation away from oriC during replication repair sensitise cells to dnaB overexpression. Absence of the accessory replicative helicase Rep, resulting in increased replication blockage and thus increased reinitiation away from oriC, also exacerbates DnaB-induced defects. These findings indicate that elevated levels of helicase perturb replication initiation not only at origins of replication but also during fork repair at other sites on the chromosome. Thus, imbalances in levels of the replicative helicase and helicase loader can inhibit replication both via inhibition of DnaB6-DnaC6 complex formation with excess DnaB, as shown here, and promotion of formation of DnaB6-DnaC6 complexes with excess DnaC [Allen GC, Jr., Kornberg A. Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. J. Biol. Chem. 1991;266:22096-22101; Skarstad K, Wold S. The speed of the Escherichia coli fork in vivo depends on the DnaB:DnaC ratio. Mol. Microbiol. 1995;17:825-831]. Thus, there are two mechanisms by which an imbalance in the replicative helicase and its associated loader protein can inhibit genome duplication
Estimation of Dermal Exposure to Oil Spill Response and Clean-up Workers after the Deepwater Horizon Disaster
The GuLF STUDY is investigating health outcomes associated with oil spill-related chemical exposures among workers involved in the spill response and clean-up following the Deepwater Horizon disaster. Due to the lack of dermal exposure measurements, we estimated dermal exposures using a deterministic model, which we customized from a previously published model. Workers provided information on the frequency of contact with oil, tar, chemical dispersants applied to the oil spill and sea water, as well as the use of protective equipment, by job/activity/task. Professional judgment by industrial hygienists served as a source of information for other model variables. The model estimated dermal exposures to total hydrocarbons (THC), benzene, ethylbenzene, toluene, xylene, n-hexane (BTEX-H), polycyclic aromatic hydrocarbons (PAHs), and dispersants in GuLF DREAM units (GDUs). Arithmetic means (AMs) of THC exposure estimates across study participants ranged from 0.9) for most of the substances in oil but were lower for some of the substances in tar. These data were linked to the study participants to allow investigation of adverse health effects that may be related to dermal exposures
Detecting undiagnosed atrial fibrillation in UK primary care: Validation of a machine learning prediction algorithm in a retrospective cohort study
Aims To evaluate the ability of a machine learning algorithm to identify patients at high risk of atrial fibrillation in primary care. Methods A retrospective cohort study was undertaken using the DISCOVER registry to validate an algorithm developed using a Clinical Practice Research Datalink (CPRD) dataset. The validation dataset included primary care patients in London, England aged ≥30 years from 1 January 2006 to 31 December 2013, without a diagnosis of atrial fibrillation in the prior 5 years. Algorithm performance metrics were sensitivity, specificity, positive predictive value, negative predictive value (NPV) and number needed to screen (NNS). Subgroup analysis of patients aged ≥65 years was also performed. Results Of 2,542,732 patients in DISCOVER, the algorithm identified 604,135 patients suitable for risk assessment. Of these, 3.0% (17,880 patients) had a diagnosis of atrial fibrillation recorded before study end. The area under the curve of the receiver operating characteristic was 0.87, compared with 0.83 in algorithm development. The NNS was nine patients, matching the CPRD cohort. In patients aged ≥30 years, the algorithm correctly identified 99.1% of patients who did not have atrial fibrillation (NPV) and 75.0% of true atrial fibrillation cases (sensitivity). Among patients aged ≥65 years (n = 117,965), the NPV was 96.7% with 91.8% sensitivity. Conclusions This atrial fibrillation risk prediction algorithm, based on machine learning methods, identified patients at highest risk of atrial fibrillation. It performed comparably in a large, real-world population-based cohort and the developmental registry cohort. If implemented in primary care, the algorithm could be an effective tool for narrowing the population who would benefit from atrial fibrillation screening in the United Kingdom
Trends in Hospitalizations for Peptic Ulcer Disease, United States, 1998–20051
TOC summary: Decreased hospitalization rates suggest decline in complications from Helicobacter pylori infection
Passive and active ventricular elastances of the left ventricle
BACKGROUND: Description of the heart as a pump has been dominated by models based on elastance and compliance. Here, we are presenting a somewhat new concept of time-varying passive and active elastance. The mathematical basis of time-varying elastance of the ventricle is presented. We have defined elastance in terms of the relationship between ventricular pressure and volume, as: dP = EdV + VdE, where E includes passive (E(p)) and active (E(a)) elastance. By incorporating this concept in left ventricular (LV) models to simulate filling and systolic phases, we have obtained the time-varying expression for E(a )and the LV-volume dependent expression for E(p). METHODS AND RESULTS: Using the patient's catheterization-ventriculogram data, the values of passive and active elastance are computed. E(a )is expressed as: [Image: see text]; E(p)is represented as: [Image: see text]. E(a )is deemed to represent a measure of LV contractility. Hence, Peak dP/dt and ejection fraction (EF) are computed from the monitored data and used as the traditional measures of LV contractility. When our computed peak active elastance (E(a,max)) is compared against these traditional indices by linear regression, a high degree of correlation is obtained. As regards E(p), it constitutes a volume-dependent stiffness property of the LV, and is deemed to represent resistance-to-filling. CONCLUSIONS: Passive and active ventricular elastance formulae can be evaluated from a single-beat P-V data by means of a simple-to-apply LV model. The active elastance (E(a)) can be used to characterize the ventricle's contractile state, while passive elastance (E(p)) can represent a measure of resistance-to-filling
A phase I study of combination chemotherapy with gemcitabine and oral UFT for advanced non-small cell lung cancer
A phase I study was carried out to determine the optimal dose and administration schedule for combined UFT plus gemcitabine therapy in patients with non-small cell lung cancer. Twenty-four patients (including 11 patients previously treated with cisplatin as the key drug) received oral UFT 400 mg m−2 on days 1 to 14 with intravenous infusions of gemcitabine (800 mg m−2 on days 8 and 15, or 900 mg m−2 on days 8 and 15, or 900 mg m−2 on days 1, 8 and 15). The most appropriate dosing option appeared to be 400 mg m−2 per day of oral UFT for 14 consecutive days with 900 mg m−2 gemcitabine on days 8 and 15. Eight of the 24 patients achieved partial response. The combination chemotherapy UFT and gemcitabine was well tolerated and may benefit patients with advanced non-small cell lung cancer. A multicentre phase II study using a 3-weekly regimen is in progress
Assessing Exposures from the Deepwater Horizon Oil Spill Response and Clean-up
The GuLF Study is investigating adverse health effects from work on the response and clean-up after the Deepwater Horizon explosion and oil release. An essential and necessary component of that study was the exposure assessment. Bayesian statistical methods and over 135 000 measurements of total hydrocarbons (THC), benzene, ethylbenzene, toluene, xylene, and n-hexane (BTEX-H) were used to estimate inhalation exposures to these chemicals for >3400 exposure groups (EGs) formed from three exposure determinants: job/activity/task, location, and time period. Recognized deterministic models were used to estimate airborne exposures to particulate matter sized 2.5 μm or less (PM2.5) and dispersant aerosols and vapors. Dermal exposures were estimated for these same oil-related substances using a model modified especially for this study from a previously published model. Exposures to oil mist were assessed using professional judgment. Estimated daily THC arithmetic means (AMs) were in the low ppm range (<25 ppm), whereas BTEX-H exposures estimates were generally <1000 ppb. Potential 1-h PM2.5 air concentrations experienced by some workers may have been as high as 550 μg m-3. Dispersant aerosol air concentrations were very low (maximum predicted 1-h concentrations were generally <50 μg m-3), but vapor concentrations may have exceeded occupational exposure excursion guidelines for 2-butoxyethanol under certain circumstances. The daily AMs of dermal exposure estimates showed large contrasts among the study participants. The estimates are being used to evaluate exposure-response relationships in the GuLF Study
Shot Noise in Mesoscopic Conductors
Theoretical and experimental work concerned with dynamic fluctuations has
developed into a very active and fascinating subfield of mesoscopic physics. We
present a review of this development focusing on shot noise in small electric
conductors. Shot noise is a consequence of the quantization of charge. It can
be used to obtain information on a system which is not available through
conductance measurements. In particular, shot noise experiments can determine
the charge and statistics of the quasiparticles relevant for transport, and
reveal information on the potential profile and internal energy scales of
mesoscopic systems. Shot noise is generally more sensitive to the effects of
electron-electron interactions than the average conductance. We present a
discussion based on the conceptually transparent scattering approach and on the
classical Langevin and Boltzmann-Langevin methods; in addition a discussion of
results which cannot be obtained by these methods is provided. We conclude the
review by pointing out a number of unsolved problems and an outlook on the
likely future development of the field.Comment: 99 two-column pages; 38 .eps figures included. Submitted to Physics
Reports. Many minor improvements; typos corrected; references added and
update
- …