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ABSTRACT 

Aims: To evaluate the ability of a machine learning (ML) algorithm to identify patients at high 

risk of atrial fibrillation (AF) in primary care. 

Methods: A retrospective cohort study was undertaken using the DISCOVER registry to 

validate an algorithm developed using a Clinical Practice Research Datalink (CPRD) dataset. 

The validation dataset included primary care patients in London, England aged ≥30 years from 

01 January 2006 to 31 December 2013, without a diagnosis of AF in prior five years. Algorithm 

performance metrics were sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV), and number needed to screen (NNS). Subgroup analysis of patients 

aged ≥65 years also performed. 

Results: Of 2,542,732 patients in DISCOVER, the algorithm identified 604,135 patients 

suitable for risk assessment. Of these, 3.0% (17,880 patients) had a diagnosis of AF recorded 

before study end. The AUROC was 0.87, compared with 0.83 in algorithm development. The 

NNS was nine patients, matching the CPRD cohort. In patients aged ≥30 years, the algorithm 

correctly identified 99.1% of patients who did not have AF (NPV) and 75.0% of true AF cases 

(sensitivity). Among patients aged ≥65 years (n=117,965), the NPV was 96.7% with 91.8% 

sensitivity. 

Conclusions: This AF risk prediction algorithm, based on ML methods, identified patients at 

highest risk of AF. It performed comparably in a large, real-world population-based cohort and 

the developmental registry cohort. If implemented in primary care, the algorithm could be an 

effective tool for narrowing the population who would benefit from AF screening in the United 

Kingdom. 

Abstract word count: 250 words 
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INTRODUCTION  

Atrial fibrillation (AF), is the most common arrhythmia (irregular heart rhythm disorder), and 

is associated with disability following AF-related stroke, heart failure and premature death.1, 2 

Patients with AF have an approximately fivefold increase in stroke incidence3 and an 

approximately twofold increase in the risk of death within 30 days of an AF-related stroke 

compared with patients without AF.4 It is estimated that approximately 1.4 million people in 

England are living with AF, however AF can be difficult to diagnose because it is often 

paroxysmal and/or asymptomatic or minimally symptomatic.5, 6 As a result, an estimated 30% 

of patients living with AF are undiagnosed.5 Early detection and effective management of AF 

are likely to both improve patient outcomes and reduce the economic burden of AF-related 

morbidity. Detection of undiagnosed AF is a fine balance between the associated patient 

burden, healthcare resource use and costs on one hand, and diagnostic sensitivity and 

specificity on the other. Opportunistic testing for AF in symptomatic or high-risk patients (such 

as those with irregular pulse or aged ≥65 years as risk of AF increases with age) typically 

requires frequent electrocardiogram (ECG) tests to capture the arrhythmia.7  

 

In the absence of a formal screening programme in the UK, prediction models based on risk 

factors for AF could help to identify patients at highest risk of AF to offer a more targeted 

approach to screening. Existing risk prediction tools include the Framingham,8 Atherosclerosis 

Risk In Communities (ARIC,9 and Cohorts for Aging and Research in Genomic Epidemiology 

(CHARGE-AF)10 models, however all of these were developed in the United States and 

therefore may not be directly applicable to other populations and health care systems, such as 

patients in the UK.11, 12 Furthermore, some of these tools require ECG-derived data which is 

not available to all patients,8, 9 and none are automated, meaning they are difficult to implement 

in routine clinical practice. 
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Machine learning (ML) is a form of artificial intelligence that is particularly useful for 

examining non-linear associations and complex interactions between variables without having 

to specify these relationships a priori. Investment in, development, and adoption of artificial 

intelligence across the NHS is at the forefront of the UK government’s healthcare agenda.13, 14 

Novel but clinically useful applications of artificial intelligence, such as ML-based prediction 

algorithms, may have a role in automated screening of a chosen population (e.g. a General 

practitioner, GP, practice) to narrow the population who could benefit from screening for AF.  

 

As AF has a complex aetiology, models developed using these methods may offer improved 

predictive performance compared with models built with classical statistical methods to 

estimate AF-risk. Indeed, a recently published AF risk prediction algorithm, developed using 

routinely collected UK primary care data from the Clinical Practice Research Datalink (CPRD) 

was better able to identify patients at highest risk of AF compared with existing models.15 

Compared to the CHARGE-AF model, the AF-risk prediction algorithm was able to reduce the 

number of high-risk patients needed to be screened to identify one case of AF by 31%, from 

13 to 9.15 However, whilst results are promising based on CPRD data, the algorithm has not 

yet been applied to other data sources and it is unknown how well the model will perform with 

different population-based data. Therefore, the aim of this study was to externally validate the 

ML AF risk prediction algorithm in a large, independent dataset. 
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METHODS 

Study design and data source 

For this external validation, a retrospective cohort study was undertaken using coded primary 

care data from the Whole Systems Integrated Care (WSIC) dataset, which is one of Europe’s 

largest patient-level datasets, containing data from approximately 2.5 million patients across 

North West London (NWL) at any given time. Study data were obtained through the 

DISCOVER secure environment, which was developed by Imperial College Health Partners, 

the Academic Health Science Network for NWL. Unlike other datasets such as CPRD which 

include data extracted from only a proportion of the primary care population in the UK, 

DISCOVER contains data for 95% of the population in NWL.16  

 

Primary care data in WSIC are extracted directly from clinical systems and sensitive data, such 

as abortions, and patient opt-outs are purged. Invalid data are either removed, redirected or 

logged and reported to clinical users as part of data quality checks. The completeness of data 

in WSIC on six key risk factors (alcohol intake, blood pressure, BMI, cholesterol, ethnicity and 

smoking) has been previously investigated.16 The completeness of recorded data in 

DISCOVER for each of these factors has increased over time. In 2017, completeness was over 

70% for smoking, blood pressure, ethnicity, alcohol and BMI, while cholesterol was at 50% 

completeness.16 

 

Favourable ethical opinion was secured in October 2018 to use the Discover Research Platform 

for research purposes for a period of five years. The Research Ethics Committee reference is 

18/WM/0323 and the Integrated Research Application System project identifier is 253449. The 

opinion clearly stated that there is no requirement for each application to request ethical 

approval. This research did successfully secure local Research and Development Department 
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approval to proceed from the NWL Data Research Access Group on 18th October 2018. Patient 

consent was not required because the study was retrospective study using anonymised data. 

 

Eligibility criteria 

The eligible cohort included patients registered with DISCOVER who were aged ≥30 years 

between 01 January 2006 and 31 December 2016 and who had no history of AF recorded in 

the preceding five years. Only patients with a complete set of height, weight, body mass index 

(BMI; three measurements or two measurements and one calculated from standard formulae), 

systolic blood pressure and diastolic blood pressure within a 12-month period were eligible for 

inclusion in the study. The index date was defined as the date when the required complete set 

of measurements was recorded. 

 

Observation period 

De-identified primary care data for all patients were extracted via DISCOVER for the period 

01 January 2001 to 31 December 2016. Patients were followed up until AF diagnosis or death, 

transfer out of practice, or study end date (31 December 2016), whichever occurred earliest. 

Diagnoses of AF, and patient factors included in the model, were identified using relevant Read 

codes, the coded clinical term system used in UK primary care, that were used for algorithm 

development (see full code list provided in Hill et al).15 A five-year look-back period from the 

index date was used to detect recorded comorbidities. 

 

Sample size considerations 

DISCOVER contains records for approximately 2.5 million patients in the general population 

of NWL. In the algorithm development study using CPRD data, 43.2% of the overall patient 

sample met all of the study eligibility criteria and were included in the study. It was assumed 
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that a comparable proportion of patients in the DISCOVER dataset would meet the eligibility 

criteria (i.e. up to approximately 1 million patients).  

 

Statistical analyses to assess model performance  

In order to assess the model’s predictive ability to distinguish between patients at high and 

relatively lower risk of AF, a risk threshold for AF was generated  among eligible patients in 

the Discover dataset. These thresholds were derived from baseline risk factors (age, previous 

cardiovascular disease, antihypertensive medication usage) and additional time-varying 

predictors (proximity of cardiovascular events, body mass index [levels and changes], pulse 

pressure, and frequency of blood pressure measurements). Ethnicity was included in algorithm 

development but was poorly recorded in DISCOVER at the time of data extraction in this study 

and was therefore unavailable for analyses. The predictive performance of the model was then 

assessed using the following metrics: sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), number needed to screen (NNS) and area under the curve of 

the receiver operating characteristic (AUROC) for discrimination between patients with and 

patients without AF. 

 

Analyses were undertaken with model sensitivity set at 50% and 75%, with corresponding risk 

thresholds based on the baseline data of eligible patients in DISCOVER of 5.5% and 2.3%, 

respectively. As the model was originally developed for patients aged ≥30 years, sub-analyses 

were undertaken in patients aged ≥65 years as AF is more prevalent with increasing age. 

Reporting and presentation of model validation results was guided by the Transparent 

Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis 

(TRIPOD) statement (see supplementary file). 
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Descriptive results were reported using summary statistics. Categorical data were summarised 

with counts and percentages, while continuous data were summarised using mean with 

standard deviation (SD), or median with interquartile range (IQR) or range, where appropriate. 

Normality was assessed using skewness/kurtosis tests. Wilcoxon signed rank tests and test of 

proportions were used to determine statistically significant differences between patients with 

AF (AF patients) and patients without AF (non-AF patients). Results with p-values <0.05 were 

considered statistically significant. All analyses were performed using Microsoft Excel 2013, 

Stata version 15.0 and R version 3.6.0.  
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RESULTS 

Patient characteristics 

Out of 2,542,732 patients in the DISCOVER database, 604,135 patients (23.8%) met the 

eligibility criteria and were included in the study. Patients were followed up for a median of 

8.0 years (AF patients: 5.1 years, IQR 2.9 to 11.0 years and non-AF patients: 8.1 years, IQR 

5.1 to 10.2 years), with total follow-up of 4,464,687 person-years (AF patients: 94,716 person-

years and non-AF patients: 4,369,971 person-years). During follow-up, 17,880 (3.0%) patients 

had a recorded diagnosis of AF. 

 

Patients with AF were significantly older than patients without AF (p<0.001). The mean age 

of patients with AF was 69 years (SD 11.3) compared with 52 years (SD 13.0) for those without 

AF. Table 1 also shows that a greater proportion of AF patients were male than non-AF patients 

(54.3% compared with 48.8%, p<0.001) and the mean BMI in AF patients was higher than in 

non-AF patients, 28.4 kg/m2 (SD 6.6) compared with 27.0 kg/m2 (SD 6.1), p<0.001. A smaller 

proportion of patients with AF had type 1 diabetes (10.5%) compared with non-AF patients 

(15.6%), p<0.001 but a greater proportion had type 2 diabetes (15.0% versus 7.5% respectively, 

p<0.001). 

 

Hypertension was the most common condition among patients with and patients without AF 

(45.5%, n=8,137/17,880 and 17.1%, n=100,159/586,255 respectively). There were significant 

differences in the clinical histories of patients with and without AF in all conditions of interest 

(p≤0.002 for each condition) except for congenital heart disease. 
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Comparison with algorithm development population 

Similar rates of AF were identified in the model development and validation datasets (3.2% 

[n=95,607/2,994,837] and 3.0% [n=17,880/604,135], respectively). Table 2 shows that there 

were significant differences between the datasets used for developing and validating the 

algorithm in most baseline patient demographic and clinical characteristics.  

 

For example, 46.6% (n=1,395,397/2,994,837) of all patients in the development study were 

male compared with 49.0% (n=295,861/604,135) in this study (p<0.0001). The mean age of 

AF patients was 70.2 years (SD 11.1) in the CPRD study compared with 68.6 years (SD 11.3) 

in this study (p<0.0001). Fewer patients in this study, overall and in the AF group, were former 

smokers compared with patients in the development dataset. Greater proportions of patients  

had been diagnosed with type 1 and type 2 diabetes in this study, p<0.0001 for type 2 diabetes 

in the overall sample and also the AF group. Overall, 23.4% (n=701,966/2,994,837) in CPRD 

versus 15.9% (n=96,327/604,135) in DISCOVER, (p<0.0001). AF group – 33.7% 

(n=32,198/95,607) in CPRD versus 26.3% (n=4,697/17,880), (p<0.001). 

 

Overall algorithm performance 

The algorithm’s AUROC was 0.87 for patients aged ≥30 years in this study (see supplementary 

material). At 75% sensitivity and with risk threshold of 2.3%, the algorithm achieved 82.0% 

specificity, 11.3% PPV and 99.1% NPV, indicating an NNS of nine patients. Table 3 also 

shows that at reduced sensitivity of 50% and with a risk threshold of 5.5%, specificity, and 

PPV increased to 92.6% and 16.9%, respectively, while the NPV was similar (98.4%) but the 

NNS was reduced to six patients. 
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Performance in patients aged 65 years or older 

Approximately a fifth of the study population was aged ≥65 years (19.5%, n=117,965/ 

604,135). Among these patients, 10.3% were diagnosed with AF during follow-up 

(n=12,124/117,965). The algorithm achieved an AUROC of 0.71 in patients aged ≥65 years 

(see supplementary material). At a risk threshold of 2.3%, algorithm sensitivity was 91.8% 

with 27.4% specificity, 12.6% PPV, 96.7% NPV and an NNS of eight patients. At a higher risk 

threshold of 5.5%, sensitivity was 64.8% with 65.9% specificity, 17.9% PPV, 94.2% NPV and 

an NNS of six patients. 

 

Comparison with model development 

Compared with the development study, among patients aged ≥30 years the algorithm displayed 

better discriminative performance in the validation population (AUROC 0.83 versus 0.87). 

Table 3 shows that at 50% and 75% sensitivities, the algorithm correctly identified more 

patients aged ≥30 years without AF during model validation than in development. PPV and 

NPV were similar using CPRD and DISCOVER datasets at 50% and 75% sensitivities (Table 

3). In algorithm development, the risk threshold was set at 7.4% to reach 50% sensitivity. 

During validation, a lower threshold was required to reach the same sensitivity, with 

comparable specificity, PPV and NNS to the development study. 
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DISCUSSION  

Among the 604,135 patients in the DISCOVER database who met the eligibility criteria, 3.0% 

had been diagnosed with AF by the end of the follow-up period. The prediction algorithm 

displayed good discriminatory power (AUROC 0.87) in distinguishing between patients with 

AF and those without AF. In the subgroup of patients aged ≥65 years, the discriminatory power 

was slightly weaker, but was nevertheless acceptable (AUROC 0.71).  

 

For a risk prediction algorithm to have clinical validity and utility, it needs to be accurate at 

ensuring patients classified as low risk are free from AF. At 75% sensitivity, the corresponding 

risk threshold was 2.3% and the NPV was 99.1%, indicating that >99% of patients classified 

as low risk did not go on to develop AF during the follow-up period. Similarly, a PPV of 11.3% 

indicated that only nine higher-risk patients would need to be screened to identify one case of 

AF. In the subgroup of patients aged ≥65 years, the NPV still remained high at 96.7%, and 

only eight higher-risk patients would be required screening to identify one case of AF. 

 

A key strength of the study is that it is one of the first to demonstrate the validity of a ML-

based prediction model to assess the risk of AF using patient records from a large research 

database covering approximately 2.5 million patients in one geographical area of England. The 

study benefitted from using data covering a different population of patients and GP practices 

to the CPRD model development dataset. While the CPRD dataset included records from 

practices that use the Vision clinical computer system, this system is used in less than 15% of 

GP practices across London.17 There was no overlap between the datasets used in the two 

studies as DISCOVER contains records from two clinical computer systems other than 

Vision.16  
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Nevertheless, there are some methodological limitations. For example, results from this study 

are based on data from a geographically localised area in England and, therefore, the findings 

may not be generalisable to patient populations in other regions of the UK or other countries. 

Related to this, a large proportion of AF diagnoses are made opportunistically in secondary 

care.18 Therefore it is important to further assess model performance using linked primary care 

and secondary care data. Due to the use of existing, routinely collected data, analyses and 

interpretation of results were limited by the accuracy and completeness of original data entry. 

For example, ethnicity was poorly recorded in DISCOVER at the time of data extraction (but 

was included in algorithm development) and, therefore, this predictor variable was missing 

from analyses. However, in contrast to accessible and explicit classical statistical methods, 

prediction algorithms built using ML methods, lack transparency.19, 20 As such, the true impact 

of completely missing ethnicity data on the algorithm’s performance is unknown. 

 

While the rate of AF among patients eligible for screening in this study (3.0%) was comparable 

to the estimated national prevalence of AF (2.5%)5 and the development study (3.2%),15 there 

were notable differences between the DISCOVER and CPRD datasets in patients’ 

demographic and clinical characteristics. These sampling variations were reflected in the 

different risk thresholds applied in the two studies to reach 50% sensitivity (5.5% and 7.4%, 

respectively), which is typical in studies such as this one where the risk threshold is data-

driven.21 Additionally, the relative importance of individual risk factors and the relationships 

between them (i.e. risk profiles), are likely to be different in patients aged ≥30 years compared 

with patients aged ≥65 years. Consequently, the algorithm would need to be recalibrated for a 

new population (patients aged ≥65 years). 
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In both the development study and this validation study, the model displayed improved 

discriminatory power (AUROC 0.83 and 0.87 respectively) compared with the best performing 

existing risk prediction model, CHARGE-AF (AUROC 0.73).10, 15 Other AF prediction tools 

have been developed using large datasets routinely collected for clinical and administrative 

purposes, such as the HAVOC (abbreviation for hypertension, age, valvular heart disease, 

peripheral vascular disease, obesity, congestive heart failure and coronary artery disease) score 

for detecting AF after cryptogenic stroke and transient ischemic attack using data from the 

United States.22, 23 The algorithm showed superior power to the HAVOC score, which had 

AUROCs of 0.77 and 0.69 at development and validation, respectively.  

 

In the algorithm development study, it was estimated that nine patients identified as at higher 

risk of AF by the algorithm needed to be screened to diagnose one case of AF.15 This finding 

was confirmed in this validation study and indicates the algorithm is more effective than the 

CHARGE-AF model, which required 13 higher risk patients to be screened to diagnose one 

case of AF.10 Furthermore, a NNS of nine is far superior to that reported in a recent systematic 

review and meta-analysis by Lowres et al (2019) that included studies using AF screening 

methods (including a mix of opportunistic and more systematic approaches) accepted by the 

European Society of Cardiology.24 Lowres et al estimated from meta-regression results that 

294 patients aged <60 years are required to be screened to diagnose one case of AF. Even 

among patients aged ≥65 years, the NNS was 69, significantly greater than the NNS of nine 

reported in this study.24 

 

ML techniques have already been used to aid in the identification of AF via ECG and pulse 

waveforms.25-28 Such techniques can detect subtle changes in the ECG waveform that are 

invisible to the human eye even when a patient is in sinus rhythm,29 and increase the ability of 
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clinicians to identify paroxysmal and/or asymptomatic AF. However, these techniques are 

limited to patients receiving an ECG, or pulse waveform analysis. A key advantage of the AF 

risk prediction algorithm evaluated in this study is that it can be applied at the population-level 

and only requires readily available, routinely collected healthcare data with no requirement for 

ECG analysis. Furthermore, as the AF risk prediction algorithm correctly assigned a low risk 

of AF to 99% of patients, and only required nine higher risk patients to be screened to detect 

one case of AF, its routine use in clinical practice is unlikely to result in unnecessary burden 

on patients or healthcare services.  

 

Current AF screening approaches either lack cost-effectiveness or diagnostic precision. 

European guidelines recommend the diagnosis of AF via ECG,30 yet this approach is not 

always considered cost-effective, regardless of whether screening is targeted at higher-risk 

patients only, or systematic (e.g. including all patients aged >65 years).31 Therefore, 

opportunistic screening by way of a pulse check is favoured in primary care because it is cost-

effective but lacks diagnostic precision.31, 32 There is evidence that systematic screening 

approaches are more effective than opportunistic activities, especially when GP-led,33 and, 

given that an estimated 30% of patients living with AF are undiagnosed,5 there is significant 

value in a systematic, accurate, automated risk prediction algorithm that could be applied to 

medical records of patients in primary care to identify patients at highest risk of undiagnosed 

AF who should be invited for further screening. 

 

One in five strokes are linked to AF and many patients are only diagnosed with AF following 

a stroke event.2 The burden of stroke on healthcare systems, and patients and their families is 

substantial and is set to rise alongside the ageing population. However, up to two thirds of AF-

related strokes can be prevented with anticoagulation therapy.34 Interventions such as the AF 
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risk prediction algorithm evaluated in this study can narrow the population that should be 

considered for screening in a cost-effective manner,35 and may potentially enable earlier 

detection of the condition. There is evidence that some limitations of ECG-based screening 

may be overcome by the use of portable, hand-held ECG machines by patients at home.36, 37 It 

is possible that combined use of different interventions, such as the risk prediction algorithm 

to identify patients at high risk of AF along with portable ECGs to support diagnosis, may 

facilitate the timely management of AF in resource and budget-constrained healthcare 

environments. 

  

CONCLUSION 

The aim of this study was to externally validate the performance of a previously developed AF 

risk prediction algorithm. In this dataset using data from the DISCOVER research database, 

the algorithm performed similarly to its development dataset. Current screening approaches for 

AF tend to lack either diagnostic precision and/or cost-effectiveness. Conversely, this AF risk 

prediction algorithm, which identifies patients at highest risk of AF based on routinely 

collected patient data, may be useful to narrow the population to detect those at highest risk of 

AF who should undergo further screening. However, the performance of the algorithm in the 

wider real-world clinical setting is unknown. Therefore, it will be important to assess the 

clinical, and also economic, impact of implementing the risk prediction algorithm in routine 

clinical practice and its clinical value in supporting timely diagnosis of AF. Further research 

would benefit from patient representative input to ensure the needs of patients are fully 

considered. 
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TABLES 

Table 1. Patient characteristics 

 All patients AF cohort Non-AF cohort 
p-value 

N=604,135 N=17,880 N=586,255 

Baseline demographic characteristics 

Age (years), mean (SD) 52.2 (13.3) 68.6 (11.3) 51.7 (13.0) <0.001  

Sex, n (%) Male 295,861 (49.0) 9,717 (54.3) 286,144 (48.8) <0.001 

Female 308,268 (51.0) 8136 (45.7) 300,105 (51.2) <0.001 

Unknown† <5 (<0.1) 0 (0) <5 (<0.1) NA 

Smoking status, n (%) Current 113,364 (18.8) 2,230 (12.5) 111,134 (19.0) <0.001 

Former 96,327 (15.9) 4,697 (26.3) 91,630 (15.6) <0.001 

Passive† 173 (<0.1) <5 (<0.1) 167 (<0.1) NA 

Non-smoker 369,342 (61.1) 10398 (58.2) 358,944 (61.2) <0.001 

Unknown 2,492 (4.1) 549 (3.1) 24,380 (4.2) <0.001 

Clinical histories* n (%) 

Hypertension 108,296 (17.9) 8,137 (45.5) 100,159 (17.1) <0.001 

Heart failure 2,909 (0.5) 608 (3.4) 2,301 (0.4) <0.001 

Left ventricular hypertrophy 1,595 (0.3) 183 (1.0) 1,412 (0.2) 0.0024 

Myocardial infraction 5,555 (0.9) 549 (3.1) 5,006 (0.9) <0.001 

Coronary heart disease 29,589 (4.9) 3,196 (17.9) 26,393 (4.5) <0.001 

Congenital heart disease 63 (<0.1) 9 (0.1) 54 (0.0) 0.7163 

Type 1 diabetes 93,459 (15.5) 1,878 (10.5) 91,581 (15.6) <0.001 
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 All patients AF cohort Non-AF cohort 
p-value 

N=604,135 N=17,880 N=586,255 

Type 2 diabetes 46,392 (7.7) 2,688 (15.0) 43,704 (7.5) <0.001 

Clinical measurements, mean (SD) 

Weight (kg) 75.7 (17.1) 80.4 (19.0) 75.6 (17.0) <0.001 

Height (m) 1.7 (0.1) 1.7 (0.1) 1.7 (0.1) 1.000 

BMI (kg/m2) 27.0 (6.1) 28.4 (6.6) 27.0 (6.1) <0.001 

SBP (mmHg) 130.1 (18.3) 139.0 (18.9) 129.8 (18.2) <0.001 

DBP (mmHg) 79.0 (10.8) 79.1 (11.1) 79.0 (10.8) 0.3392 

 
*Clinical histories up to 5 years before index date 

†p-values not shown due to small numbers 

AF: atrial fibrillation; BMI: Body mass index; CPRD: Clinical Practice Research Datalink; DBP: Diastolic blood pressure; 

NA: Not applicable; SBP: Systolic blood pressure. 
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Table 2. Comparison of patients in development (CPRD) and validation (DISCOVER) datasets 

 All patients AF cohort 

DISCOVER CPRD p-value DISCOVER CPRD p-value 

Baseline demographic characteristics 

Age (years), mean (SD) 52.2 (13.3) 55.98 (14.46) <0.0001 68.6 (11.3) 70.23 (11.07) <0.001 

Sex, n (%) Male 295,861 (49.0) 1,395,397 (46.6) <0.0001 9,717 (54.3) 51,738 (54.1) 0.6223 

Smoking 

status, n (%) 

Current 11,3364 (18.8) 555,074 (18.5) <0.0001 2,230 (12.5) 10,571 (11.1) <0.001 

Former 96,327 (15.9) 701,966 (23.4) <0.0001 4,697 (26.3) 32,198 (33.7) <0.001 

Passive 173 (<0.1) 7,876 (0.3) NA <5 (<0.1) 279 (<0.5) NA 

Non-smoker 369,342 (61.1) 1,269,538 (42.4) <0.0001 10,398 (58.2) 37,384 (39.1) <0.001 

Unknown 24,929 (4.1) 460,383 (15.4) <0.0001 549 (3.1) 15,175 (15.9) <0.001 

Clinical histories* n (%) 

Hypertension 108,296 (17.9) 748,849 (25.0) <0.0001 8,137 (45.5) 50,501 (52.8) <0.0001 

Heart failure 2,909 (0.5) 22,054 (0.7) <0.0001 608 (3.4) 2,805 (2.9) 0.0003 

Left ventricular hypertrophy 1,595 (0.3) 4,727 (0.2) <0.0001 183 (1.0) 502 (0.5) <0.001 

Myocardial infraction 5,555 (0.9) 42,830 (1.4) <0.0001 549 (3.1) 3,009 (3.1) 1.0000 

Coronary heart disease 29,589 (4.9) 154,029 (5.1) <0.0001 3196 (17.9) 13,703 (14.3) <0.001 

Congenital heart disease† 63 (<0.5) 501 (<0.1) NA 9 (0.1) 58 (<0.5) NA 
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 All patients AF cohort 

DISCOVER CPRD p-value DISCOVER CPRD p-value 

Type 1 diabetes† 93,459 (15.5) 19,101 (0.6) NA 1,878 (10.5) 831 (0.9) NA 

Type 2 diabetes 46,392 (7.7) 187,733 (6.3) <0.0001 2,688 (15.0) 10,727 (11.2) <0.0001 

Clinical measurements, mean (SD) 

Weight (kg) 75.7 (17.1) 78.32 (18.3) <0.0001 80.4 (19.0) 81.55 (19.5) <0.0001 

Height (m) 1.7 (0.1) 1.68 (0.1) 1.000 1.7 (0.1) 1.69 (0.1) 1.000 

BMI (kg/m2) 27.0 (6.1) 27.59 (6.0) <0.0001 28.4 (6.6) 28.56 (6.2) 0.0001 

SBP (mmHg) 130.1 (18.3) 133.58 (18.9) <0.0001 139.0 (18.9) 140.97 (19.3) <0.0001 

DBP (mmHg) 79.0 (10.8) 79.40 (10.9) <0.0001 79.1 (11.1) 79.12 (11.0) 1.000 

 
*Clinical histories up to 5 years before index date 

†p-values not shown due to small numbers 

AF: atrial fibrillation; BMI: Body mass index; CPRD: Clinical Practice Research Datalink; DBP: Diastolic blood pressure; 

NA: Not applicable; SBP: Systolic blood pressure. 

Table 3. Assessment of model performance at 75% and 50% sensitivities in all patients aged 

≥30 years 

Study Sensitivity AF risk 

threshold 

Specificity PPV NPV Potential 

NNS 

AUROC 

DISCOVER  50% 5.5% 92.6% 16.9% 98.4% 6 
0.87 

75% 2.3% 82.0% 11.3% 99.1% 9 

CPRD 50% 7.4% 90.0% 18.3% 97.6% 5 0.83 
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75% 
Not 

published 
74.9% 11.5% 98.5% 9 

 
AF: atrial fibrillation; AUROC: area under the receiver operating characteristic curve; CPRD: Clinical Practice Research 

Datalink; NNS: number needed to screen (to identify one AF case); NPV: negative predictive value (percentage of screened 

patients not diagnosed with AF); PPV: positive predictive value (percentage of screened patients diagnosed with AF). 
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