36 research outputs found

    The CD16+ (FcγRIII+) Subset of Human Monocytes Preferentially Becomes Migratory Dendritic Cells in a Model Tissue Setting

    Get PDF
    Much remains to be learned about the physiologic events that promote monocytes to become lymph-homing dendritic cells (DCs). In a model of transendothelial trafficking, some monocytes become DCs in response to endogenous signals. These DCs migrate across endothelium in the ablumenal-to-lumenal direction (reverse transmigration), reminiscent of the migration into lymphatic vessels. Here we show that the subpopulation of monocytes that expresses CD16 (Fcγ receptor III) is predisposed to become migratory DCs. The vast majority of cells derived from CD16+ monocytes reverse transmigrated, and their presence was associated with migratory cells expressing high levels of CD86 and human histocompatibility leukocyte antigen (HLA)-DR, and robust capacity to induce allogeneic T cell proliferation. A minority of CD16− monocytes reverse transmigrated, and these cells stimulated T cell proliferation less efficiently. CD16 was not functionally required for reverse transmigration, but promoted cell survival when yeast particles (zymosan) were present as a maturation stimulus in the subendothelial matrix. The cell surface phenotype and migratory characteristics of CD16+ monocytes were inducible in CD16− monocytes by preincubation with TGFβ1. We propose that CD16+ monocytes may contribute significantly to precursors for DCs that transiently survey tissues and migrate to lymph nodes via afferent lymphatic vessels

    Microphysiologic Human Tissue Constructs Reproduce Autologous Age-Specific BCG and HBV Primary Immunization in vitro

    Get PDF
    Current vaccine development disregards human immune ontogeny, relying on animal models to select vaccine candidates targeting human infants, who are at greatest risk of infection worldwide, and receive the largest number of vaccines. To help accelerate and de-risk development of early-life effective immunization, we engineered a human age-specific microphysiologic vascular-interstitial interphase, suitable for pre-clinical modeling of distinct age-targeted immunity in vitro. Our Tissue Constructs (TCs) enable autonomous extravasation of monocytes that undergo rapid self-directed differentiation into migratory Dendritic Cells (DCs) in response to adjuvants and licensed vaccines such as Bacille Calmette-Guérin (BCG) or Hepatitis B virus Vaccine (HBV). TCs contain a confluent human endothelium grown atop a tri-dimensional human extracellular matrix substrate, employ human age-specific monocytes and autologous non heat-treated plasma, and avoid the use of xenogenic materials and exogenous cytokines. Vaccine-pulsed TCs autonomously generated DCs that induced single-antigen recall responses from autologous naïve and memory CD4+ T lymphocytes, matching study participant immune-status, including BCG responses paralleling donor PPD status, BCG-induced adenosine deaminase (ADA) activity paralleling infant cohorts in vivo, and multi-dose HBV antigen-specific responses as demonstrated by lymphoproliferation and TCR sequencing. Overall, our microphysiologic culture method reproduced age- and antigen-specific recall responses to BCG and HBV immunization, closely resembling those observed after a birth immunization of human cohorts in vivo, offering for the first time a new approach to early pre-clinical selection of effective age-targeted vaccine candidates

    Microphysiologic Human Tissue Constructs Reproduce Autologous Age-Specific BCG and HBV Primary Immunization <i>in vitro</i>

    Get PDF
    Current vaccine development disregards human immune ontogeny, relying on animal models to select vaccine candidates targeting human infants, who are at greatest risk of infection worldwide, and receive the largest number of vaccines. To help accelerate and de-risk development of early-life effective immunization, we engineered a human age-specific microphysiologic vascular-interstitial interphase, suitable for pre-clinical modeling of distinct age-targeted immunity in vitro. Our Tissue Constructs (TCs) enable autonomous extravasation of monocytes that undergo rapid self-directed differentiation into migratory Dendritic Cells (DCs) in response to adjuvants and licensed vaccines such as Bacille Calmette-Guérin (BCG) or Hepatitis B virus Vaccine (HBV). TCs contain a confluent human endothelium grown atop a tri-dimensional human extracellular matrix substrate, employ human age-specific monocytes and autologous non heat-treated plasma, and avoid the use of xenogenic materials and exogenous cytokines. Vaccine-pulsed TCs autonomously generated DCs that induced single-antigen recall responses from autologous naïve and memory CD4+ T lymphocytes, matching study participant immune-status, including BCG responses paralleling donor PPD status, BCG-induced adenosine deaminase (ADA) activity paralleling infant cohorts in vivo, and multi-dose HBV antigen-specific responses as demonstrated by lymphoproliferation and TCR sequencing. Overall, our microphysiologic culture method reproduced age- and antigen-specific recall responses to BCG and HBV immunization, closely resembling those observed after a birth immunization of human cohorts in vivo, offering for the first time a new approach to early pre-clinical selection of effective age-targeted vaccine candidates.</p

    Role of CCR8 and Other Chemokine Pathways in the Migration of Monocyte-derived Dendritic Cells to Lymph Nodes

    Get PDF
    Studying the influence of chemokine receptors (CCRs) on monocyte fate may reveal information about which subpopulations of monocytes convert to dendritic cells (DCs) and the migration pathways that they use. First, we examined whether prominent CCRs on different monocyte subsets, CCR2 or CX3CR1, mediated migration events upstream of the accumulation of monocyte-derived DCs in lymph nodes (LNs). Monocytes were labeled and traced by uptake of latex microspheres in skin. Unexpectedly, neither CCR2 nor CX3CR1 were required. However, absence of CCR2 led to an increased labeling of the minor Gr-1int monocyte population, and the number of latex+ DCs that emigrated to LNs was correspondingly increased. Characterization of Gr-1int monocytes revealed that they selectively expressed CCR7 and CCR8 mRNA in blood. CCR7 and CCR8 pathways were used by monocyte-derived DCs during mobilization from skin to LNs. The role of CCR8 in emigration from tissues also applied to human monocyte-derived cells in a model of transendothelial trafficking. Collectively, the data suggest that Gr-1int monocytes may be most disposed to become a lymphatic-migrating DCs. When these monocyte-derived DCs exit skin to emigrate to LNs, they use not only CCR7 but also CCR8, which was not previously recognized to participate in migration to LNs

    Biofunctionalization of hydrogel-based scaffolds for vascular tissue regeneration

    Get PDF
    Congenital and acquired tissular losses due to disease or trauma are a major world health problem. Regenerative therapy aims to fix damaged tissues by directing the natural capacity of a host organism to use biofunctionalized artificial tissue scaffolds. These three-dimensional (3D) scaffolds can be customized with cells and/or bioactive molecules to induce cellular homing and angiogenesis, essential to ensure successful tissue regeneration. Hydrogels (HGs) scaffolds are networks of hydrophilic homopolymers, copolymers, and/or macromers with chemical and biological activities that enhance their cell colonization. The use of HGs in regenerative medicine has shown to be advantageous since HGs can be prepared under clinical-grade conditions and tailored to the specific needs of the replaced tissue. They can be made to emulate native extracellular matrices (ECMs) including physical, mechanical, and chemical cues and resilience properties. These customized HGs can reproduce the natural hygroscopic capacity of the original tissue which improves cellular anchoring, nutrition, and waste disposal. They can enable host molecular and cellular modification conducive to a natural cellular microenvironment, modifying the properties of the scaffold, and improving chemotaxis, cell adhesion, migration, proliferation, differentiation, and angiogenesis; HGs can be created and biofunctionalized with linked growth factors and synthetic peptides tailored to positively influence scaffold colonization and functional biocompatibility. This review aims to collect the most relevant information regarding biofunctionalization of HGs used for vascular tissue regeneration, their biological effects, and their clinical implications. While most biofunctionalized HGs are still under investigation, some of them have been studied in vitro, ex vivo, and in vivo with promising results. In this regard, in vivo studies have shown that biofunctionalized scaffolds with peptides such as chitosan hydrogel with LL-37 promotes angiogenesis and healing of pressure ulcers. Also, the GHK tripeptide is widely used in trials focused on guided tissue remodeling

    Licensed Bacille Calmette-Guérin (BCG) formulations differ markedly in bacterial viability, RNA content and innate immune activation.

    Get PDF
    BACKGROUND: Bacille Calmette-Guérin (BCG), the live attenuated tuberculosis vaccine, is manufactured under different conditions across the globe generating formulations that may differ in clinical efficacy. Innate immune recognition of live BCG contributes to immunogenicity suggesting that differences in BCG viability may contribute to divergent activity of licensed formulations. METHODS: We compared BCG-Denmark (DEN), -Japan (JPN), -India (IND), -Bulgaria (BUL) and -USA in vitro with respect to a) viability as measured by colony-forming units (CFU), mycobacterial membrane integrity, and RNA content, and b) cytokine/chemokine production in newborn cord and adult peripheral blood. RESULTS: Upon culture, relative growth was BCG-USA > JPN ? DEN > BUL = IND. BCG-IND and -BUL demonstrated >1000-fold lower growth than BCG-JPN in 7H9 medium and >10-fold lower growth in commercial Middlebrook 7H11 medium. BCG-IND demonstrated significantly decreased membrane integrity, lower RNA content, and weaker IFN-? inducing activity in whole blood compared to other BCGs. BCG-induced whole blood cytokines differed significantly by age, vaccine formulation and concentration. BCG-induced cytokine production correlated with CFU, suggesting that mycobacterial viability may contribute to BCG-induced immune responses. CONCLUSIONS: Licensed BCG vaccines differ markedly in their content of viable mycobacteria possibly contributing to formulation-dependent activation of innate and adaptive immunity and distinct protective effects

    Animal Models of Dengue Virus Infection

    Get PDF
    The development of animal models of dengue virus (DENV) infection and disease has been challenging, as epidemic DENV does not naturally infect non-human species. Non-human primates (NHPs) can sustain viral replication in relevant cell types and develop a robust immune response, but they do not develop overt disease. In contrast, certain immunodeficient mouse models infected with mouse-adapted DENV strains show signs of severe disease similar to the ‘vascular-leak’ syndrome seen in severe dengue in humans. Humanized mouse models can sustain DENV replication and show some signs of disease, but further development is needed to validate the immune response. Classically, immunocompetent mice infected with DENV do not manifest disease or else develop paralysis when inoculated intracranially; however, a new model using high doses of DENV has recently been shown to develop hemorrhagic signs after infection. Overall, each model has its advantages and disadvantages and is differentially suited for studies of dengue pathogenesis and immunopathogenesis and/or pre-clinical testing of antiviral drugs and vaccines

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Full text link
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70 MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90\% confidence level.Comment: 24 pages, 5 figure

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
    corecore